
7 AD-A16 356 VLSI (VERY LARGE
SCALE INTEGRATED)

DESIGN OF A 16 BIT
1/3

VERY FAST PIPELINED CARRY LOOK AHEAD ADDER(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA J R CONRRDI ET AL.

UNCLRSSIFIED SEP 83 F/G 9/5 NLIEIEEEEEllllE
EllEEEllEEEEEE
EEEEEElhEllllE
EllllIhElllllIIIIIIIIIIIIIIIllE.ElllEEEEEEomhohmhEEohIl

1 .0111 I I .

11U1.25 "L4 1.6

MICROCOPY RESOLUTION TEST CHART
N4ATIONAL BUREAU OF STANDARDS-1963-A

%q

NAVAL POSTGRADUATE SCHOOL
Monterey, California

(-TIC
~~C2 71983

H

T H
VLSI DESIGN OF AAVERY FAST PIPELINED

CARRY LOOK AHEAD AbDER

by

9:4 Joseph R. Conradi

Iand

Bruce R. Hauenstein

September 1983

Thesis Advisor: D. E. KirK

Approved for public release, distribution unlimited

.%S 12 1

SECUETY CLASSIPCATI OF THIS PAGE fEAM DmS al1M4_____________

READ ISTRUCTIONSREPOR OCMENTATMO PAGE DEFOMEZ COMPLZTING FORM

I. =pw numn a Goff 11311 Wt fxp CATALOG NUMBER

4. TITLE (e sae,,.jS TYPE OF REPORT A PERIOO COVEREO

VLSI Design of a Very Fast Pipelined Master's Thesis;
Carry Look Ahead Adder September 1983

S. PERFORMdING ORG. REPORT NUMUER

7. ATIROS) 1. CONTRACT OR GRANT muNUER(s)

9. 1119011FRINIG OGANIATIO MAS AN AOR11$I I. PROGRAM ELEMENT PROJECT. TASK

Naval Postgraduate SchoolARAWOKUTNUSR
Monterey, California 93943

111. cUNT"16611411 O1price NAME AND ASORESS 12. REPORT DATE
Naval Postgraduate School September 1983
Monterey, California 93943 1S. Muma* or PAGES

____ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___ 212
I& @NIT@UN@ AGEN1CY MNA AOORESS(S Wtee AV= CORNSI*M 011196) IS. SECURITY CLASS. (of Wed repee)

UNCLAS SI FIED

IS&. D"WO SPIC ATION/ DOWNGRADING

SC L

Approved for public release, distribution unlimited

17. DIST11111fYIN STAT11MUNT1111 (of Me 86"00~ SVd in 001111 M. It EfIHP41 *-P XS) Aaaess ion For

W S. 5J1.UMTANY NOTEIS

Availability Codes

to-e om(16 a* wsm 06 It*1 m.....w m- kinUr No -h-) j~,11 and/or
CAD Tools, VLSI Design, 16-Bit Pipelined AdderlDl,.t Special

r. t

This thesis is an introduction to the use of computer-aided
design (CAD) tools for the design of very large scale

* integrated circuits (VLSI). The techniques are described
and a tutorial is given which illustrates their use in the

$/Of 0102 LP6014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (ftwi Doee &#Or,.-

4.N *'- L

-,,II
computing environment at the Naval Postgraduate
School. The CAD tools were applied to design a
16-bit fast pipelined adder.

SN 0102- L%. 014- 61 2

,6CuOTv CLAMIICAIOW OF T$116 PAGME.m DOG &E;

Approved for public release, distribution unlimited.

VIMDesk ofA
16 Bit Vhwy 1wt Fipibned Cwry Look Ahead Adder

by

Joseph Robert Conradi
Lieutenant, United State. Navy

R&., University of Louisville, 1977
and

Bruce Robert Hauenstein
ieutrtnant. United State. Navy

3.3.. University of Louisville. 1976

Submitted in partial fulfilment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1963

Authors:

~r

Thesis Advisor

Second A~r

Chairman Department of Electrical Engineering

Dean ofSo e of and Engineering

S

ABSTRACT

This thesis is an introduction to the use of computer-aided design (CAD)

tools for the design of very large scale integrated circuits (VLSI). The techniques

are described and a tutorial is given which illustrates their use in the computing

environment at the Naval Postgraduate School. The CAD tools were applied to

design a 16-bit fast pipelined adder.

4

TABLE OF CONTENTS

L INTRODUCTION ... 11

11. OVERVIEW OF VLI DESIGN 13

A. INTRODUCTION .. 13

B. VIM CIRCUIR Y ... 15

* a ic ates 17

3. B uie Circuitry 17

C. MET'HODOLOGY .. 22

i. L yo t............ 23

* ML OGS ... 24

3* Design Rules .. 24

4. Building Block Approach To VLSI Design.............................. 25

5. CAD Tools ... 25

a. PIA Generator .. 26

b. CLL-Chip Layout Language... 28

c. DRC Design Rule Checker .. 26

d. Circuit Extractor ... 28

e. Simulator .. 26

*D. FABRICATION .. 27

1. File Generation :....... 1........................ 27

a wosis.. 27

3. Pattern Generator and Maakmaklng 27

5

4. Patterning .. I............................ 28

5. Pac m ... 28

E. TESTING .. 28

F.S UUMARY ..*

M . V S CA TOL S ... 30

A. LOGIN PROFILE ... 30

R FUNCTION OF SOURCE PROGRAMS ... 32

I. chip . .yot .t ...gua . .(CLL) ... 32

. O 34

b. Cioad .. 34

a. Merre .. 34

d. Rlow .. 34

e. a ort 35

f. Tplot .. 35

C. C o wedt ... 35

2. Supporting Program s 35

. lfar ... 35

b. Convert ... 36

c. U n ...P.a... 36

d. Pla ulag.................................. e........ 38

e. Unconvert ... 36

3. DesI gn Rule Checker (DRC) ... 38

4. Circuit Extractor .. 37

a Extract .. 38

b. Node-plot .. 38

. -r. . , , .,... ., :, , * .**

a. Sim .. 38

5. Static Checker ... 38

6Event Lovel, Simuvlator 39

TV. GENERATING CIF USING CIL 40

A. TUTORIAL 40

1. Header .. 41

a. Com m ents ... 41

b. External Symbols 41

c. Defines .. 42

d. Include ... 42

o. Conditionals .. 42

2. Symbol Definition 43

3.Body ... 43

a. Comments... 44

b. Rectangles .. 44

c. Layers.. 44

d. Wires ... 45

e.Vlas... 48

f. Call .. 48

S. Iteration ... 47

h.. Expressions ... 47

i.Print............................. I....................................... 48

B. CELL LIBRARY ... 48

C. USING CLL ... 48

1. Making Files .. 49

7

-,.

Platting ... 49

Creating CIF .. I........ 50

D. AMP .. 51

V. DE.IGN YAIMAMON... 5

A. D IGN RULE CH CO R ... 58

2. Exam ple .. 59

B. CCU T FRA OR ..

1 P ottn 64

. Defining Node .. 65

3. Creating A Sim ulation File .. 65

4. Exam ple 85

C. STATIC CHECKE 68

1. Evaluation Of Outputs ... 88

2. Exam ple .. 69

D. EVENT SIMULATOR ... 70

1. Usfn Euim .. 71

2. Exam ple 71

M. PRDJECT: 16 BIT VERY FAST PIPEIJNED

CARRY LOOK AHEAD ADDER .. 74

A. INTRODUCTION 7... 74

B. LOGIC DESIGN ... 74

1. P~ ei i g ... 74

2. Carry-Look-Ahead Addition ... 76

3. Design Considerations .. 83

C. DESIGN VERIFICATION ,

D. LAYOUT .. 97

E . D R C ... 103

F. SIMULATION ... 103

VII TESTING .. 106

A. EXPECTATIONS .. 105

B. PR CEDURES .. 110

C. RESULTS ... 112

.

VIII. CONCLUSION .. 11i

A. SUMMARY .. l16

B. RECOMM DATIONS .. 11

APPENDIX A - INTRODUCTION TO THE VAX-I /780 AND UNIX 118

APPENDIX B - MANUAL PAGES FOR VLSI CAD TOOLS 141
.".

APPENDIX C - SUMMARY OF Ca1 COMMANDS ... 176

APPENDIX D - DESIGN FABRICATION .. 180

APPENDIX E - FILES AND PROGRAMS FOR THESIS PROJECT 188

UST OF REFERENCES ... 210

INITIAL DISTRIBUTION LIST ... 211

B 'S

7 ~ ~ -*

ACKNOWLEDGEMENTS

We would like to thank the following individuals for their assistance in the

completion of this thesis:

Naval Postgraduate School

Dr. Donald Kirk

Prof. Robert Strum

Dr. Herschel Loomis

Mr. Al Wong

Stanford University

Dr. Robert Mathews

Ms. Susan Taylor

Ms. Irene Watson

Mr. Ernest Wood

Air Force Institute of Technology

Lt.Col. Harold Carter

10

WZW .R- K-.- .'F T- m. W; 7 77 -

1. tNTRmnni iaN

Advances in computer-aided design (CAD) and fabrication techniques, along

with the text Int--duction To VIM Sontems by Mead and Conway [REF. 1], have

created the ability for systems engineers to custom design digital integrated

circuits. Until recently, the design of integrated circuits has been traditionally

carried out by a select group of logic designers working in semiconductor

laboratories. Systems engineers had to "make do" or "fit in" the products of

these labs to realize their designs. The systems engineers had little participation

in the actual design of the chip. The MED and CONWAY design methodology and

computer aided design tools (CAD) have bridged the gap between the systems

engineer and the circuit designer. Now.systems engineers can create a custom

design to support specific needs. Armed only with a knowledge of circuit and

logic design, the present-day chip designer utilizes powerful CAD tools to mani-

pulate basic digital circuits (cells) from a pre-established library in order to

realize a custom design. Additional CAD tools can be used to check, evaluate and

simulate the design. This thesis, along with minimal references to outside

sources, provides a reader who has a basic knowledge of logic design with

enough Information to design a custom digital integrated circuit of moderate

complexity.

Before entering the realm of Very Large Scale Integration (VLSI). a few prel-
-4

Iminarles must be covered. 'MLSr' as used in this thesis should not be confused

with the Very High Speed Integrated Clrcuit(VHSIC) program in the Department

of Defense. This program with a $400 million budget is charged with advancing

the state of the art for the number of devices on a single piece of

silicon. operating speed,submicrometer line width, and other attributes. Present

day commercial VIM chips are capable of about 130,000 transistors with a

11

typical number of about 20,000. VHSIC on the other hand has set a goal to pro-

duce a circuit containing approximately one million transistors per integrated

circuit by the end of the decade. This thesis deals with devices of moderate com-

plexity, that is, from a few gates up to the size of small commercial products. A

typical number would be on the order of 2.000 to 10,000 transistors. Thus, the

complexity of the devices considered here is much less than that of commercial

and research programs.

This thesis provides an introduction to VLSI circuitry and procedures,CAD

software resources and their uses, the VAX 11-780 computer (UNIX operating sys-

tem) and other hardware resources available at the Naval Postgraduate School.

In addition, the creation of a 16 BIT VERY FAST FUPEJD CARRY LOK AHEAD

ADDE is traced from conception through the design methodology to fabrication

and testing. This provides a concrete example so that the interaction between

the user,the software and the hardware may be more fully understood.

12

+,4

n /m ~ m~~
n - ' , - , a l ' m , , - .- m-

.. .. ," - " . " -

II. AnvrWI'w flU' VTqRi 'nfU'.T

A. INTRODUCTION

The design methodology in this thesis applies to "digital" systems- "analog"
ystems are not considered. Digital systems inherently use highly regular and

repetitive structures. Many digital devices have data paths sixteen bits wideand

path widths of thirty-two to sixty bits are not uncommon. Memory units, arith-

metic logic unlts(ALU's), shift registers.crossbar switches, etc. all possess uni-

form repetitive structures. Combinatorial control logic in many cases can be

realized using programmable logic arrays (PLA's) which are also "highly struc-

tured". In addition, digital systems operate using a high or low voltage to

represent one or the other of two binary states. The two preceding attributes of

digital systems are not prominent in most analog circuitry and therefore analog

devices do "not" readily lend themselves to the design methodology described

here.

Because digital systems are highly repetitivehighly structured and operate in

either the "on" or "off' fashion, they can be realized by using the simplest of

logic gates. When these simple logic gates are fabricated in silicon, they form a

very regular array of rectangles strategically scaled and properly placed. Even

the interconnecting "wire" runs are rectangles with one dimension (length)

much larger than the other dimension(width). Resistors are realized by the

'predictable resistance of a "depletion mode" metallic oxide semiconductor field

effect transistor (MOSFET) whose gate region is connected to its source. Micros-

copic inspection of a high density integrated digital circuit would reveal only

squares or rectangles of varying dimensions and heights. The variation in height

of these elementary figures results from the placement of layers of conducting

materials onto the surface of the chip.

13

7. T, 7.*t. -- 7 .- 7t 7. -:1 7-* . 77 - T

Integrated systems in nMOS technology contain three levels of conducting

material separated by intervening layers of silicon dioxide(insulating material).

They are from top to bottom: metaI.Poliyilim, and difligon. All three paths

conduct electricity well enough to be considered wires. Unless the layers are

specifically intended to be electrically connected by using contact cutspaths on

the metal layer have no significant effect on the "poly" or the diffusion layer.

But, when a path on a poly layer crosses over a path on the diffusion layer an

"enhancement" mode MOSFET is formed. This transistor is effectively an elec-

tronic switch. Various forms and interconnections of this electronic switch pro-

vide the basic building blocks from which large scale systems are designed.

94 The n-channel MOS process is by far the most mature process in the field of

VLSI. Most devices now produced use nMOS processes, but there are also other

processes. For example,pMOS stands for p-channel MOS (the "p" denotes positive

type carriers in the channel beneath the gate area as "n' signifies negative type

carriers). CMOS denotes complementary MOS which utilizes a combination of theIl U'

two for individual devices. And "mixed' MOS utilizes "n" and "p" MOS at different

locations on the device. CMOS-SOS is CMOS but is formed on a sapphire surface

to increase the operating speed (SOS signifies silicon on sapphire). Bipolar

transistor architecture also has a place in VLSI. Since the nMOS process is the

most established, and because the project created in this thesis is of the rMOS
type, we shall concentrate on it. This should not imply that nM-OS is the best

method. Other processes may be better in terms of power

consumptionspeed~device density etc. However, complexity in the actual fabri-

cation and design may outweigh some of these more desirable traits.

14

147

Z' -. y. - -

B. VLM CHrIT

Head and Conway [REF. 1] provides an excellent discussion in chapter one

concerning the basic devices and circuits needed to understand and solve typi-

cally encountered systems problems. A full and complete understanding of this

chapter, however, is not a necessity to be able to design a custom chip. Most of

the devices and circuits discussed in chapter one of [REF. 1] will be presented in

the following discussion which should provide the depth necessary to continue

and successfully complete a custom design.

1. 1ein' rTrnaistnaw

The nMOS transistor is the most basic device used in VLSI circuitry.

Shown in Figure(2. 1) are three different representations of the same device.

A positive voltage on the gate of an nMOS transistor is used to control the

movement of negative charges between the source and drain. When the voltage

on the gate enhances the quantity of negative charge carriers(electrons) under

the gate in order that current may flow between source and drain, the device is

labeled an enhancement mode transistor. The enhancement mode transistor by

itself is effectively a switch and is referred to as a "pass" transistor. When a posi-

tive voltage Is applied to the gate, the switch Is closed. When a voltage below a

certain threshold is applied.the switch is open. When the area under the gate

region of a transistor already has enough negative charge carriers to support

current flow between the source and drain with no voltage applied to the

gatethe device is called a depletion mode transistor. The excess supply of

charge carriers is supplied by a doping process during fabrication. The area of

excess carriers is called the ion implant region. The depletion mode transistor is

always on unless a voltage of proper polarity(negative for nMOS) is applied to theI- gate to deplete the number of charge carriers, thereby turning oil the switch. In

the enhancement mode device the region under the gate area must be enhancedI 15

ORAIN
I GATE

VGID-

VIDl SOURCE DRAIN

+I

SOURCE

(IFFUSIOt4)

Figure(2. 1) The Basic riMOS Transistor

16

to turn the switch on while in the depletion mode device the region under the

gate area must be depleted to turn the device off. In a pMOS device, the opera-

tion is identical except that the charge carriers are "holes" and voltage polari-

ties are just the opposite of that required for proper nMOS operation.

2. Baskc..a-e

The basic inverter will now be discussed. Using an enhancement mode

switch (pass transistor) in series with a resistor, an inverter gate can be real-

ized. In VLSI design, however.resistors are not used. Instead, resistance is gen-

erated by a depletion mode transistor. To ensure that the depletion mode

transistor remains in the "on" mode, thereby effectively introducing a predict-

able amount of resistance as the load,the gate is connected to the source. A

resistance made of polysilicon or carbon would take up far too much area on the

surface of the chip to allow reasonable densities. The amount of resistance intro-

duced by this continually switched on transistor is largely determined by the

size of the gate and Ion implant region. More important is the ratio of the gate

geometries of the depletion mode ("pull-up") transistor to the enhancement

mode ("pull-down") transistor. By obtaining proper ratios for the

depletion/enhancement mode transistors, an inverter circuit can be produced.

The output will be the complement of the input. Shown in Fliure(2.2) is the basic

inverter in several forms along with extensions that realize the NAND and NOR

functions.

3. BuAm.iro rii±it

Many applications require that the output of a basic inverter drive more

than one following clrcuit(fanout). In this case, because of the much larger com-

bined input capacitance, more drive current capability is required. Again, mani-

pulation of the basic inverter produces both inverLing and non-inverting "super

buffers". These are high performance circuits used to reduce the delay time

17

X-." C- . Z. XlX.x V ;7 K- r4

VDo DEPLETION Voo
.- MODE ...

~ ni..ENHANCE MENT
MODE

NOT o

VDD

-iD~y XY -

IL.-

NAND INS

Voo

x --

NOR

Figure(2.2) The Basic Inverter with NAND and NOR extensions.

*11
,, .++ +i , .. .

that is induced by the increased RC time constant when fanout and parasitic

capacitances cau the equivalent capacitance to increase. The extra drive

current capability is obtained from proper interconnection of two standard

inverter gates. See [REF 1], Figure 1.21 and 1.22. for a schematic representation

of inverting and non-inverting super buffers. To emphasize that nearly all cir-

cults can be constructed through the proper connection and adaptation of the

basic inverter gatea few additional examples will be discussed. Shown in Fig-

ure(2.3) is the cross-coupled inverter circuit. This circuit has many applications

in control sequencing.memory cellsand register arrays. A programmable logic

array (PIA) is shown in Figure(2.4). Normally, PLA's are thought of as having an

AND plane and an OR plans. Careful analysis shows that the PLA is made up of

nothing more than pass transistors and inverter gates. Actuallythis PLA Imple-

ments the NOR-NOR canonical form of Boolean functions of the inputs. By prop-

erly feeding selected outputs back into selected inputs.a synchronous finite

state machine results. PIA's prove to be very important in system control

sequences. One of the CAD tools which is discussed in a following chapter is

called PLAGUE, which stands for PIA Generator Using Equations. By inserting

the Boolean equations in the proper format, the software tool determines the

proper placement of the elementary fgures(rectangles) to realize the desired

logic in silicon. PLAGUE can realize combinatorial logic on the order of 40

inputs,40 outputs and 150 product terms. [REF. 1] provides excellent information

on PLA's and their uses. The design project which is the subject of this thesis (a

sixteen-bit adder) relies heavily on the use of PA's.

Referring to Figure(2.4), an implication arises when observing the input

and output "registers". Clearly, If the input and the output registers are made

up of nothing more than pass transistors and inverter gatesthen to truly be a

registersome type of storage mechanism must be involved. This is indeed true.

19

.. s.r. i i "-'L.'...'-....- " -.- -•". ", .4 . .-....

'.40

Flgure(2.3) Cross-coupled Inverter Circuit

AND OR
PLANE I PLANE

.7: V00 VDD
In

_rI 2 i _r' " _

'I

02

Figure(2.4) Iniverter Realization of FLA

s

When a positive voltage is applied through an "on!' pass transistor to the gate of

the Inverter circuits, the capacitance between the gate and the substrate is

charged and maintains the charged condition for a finite amount of time after

the pass transistor is turned off. The "turned off' pass transistor represents a

large amount of resistance. This charge will decrease in an RC time constant

u fashion. The amount of time for the gate voltage to decrease to below threshold

is on the order of milliseconds. Threshold voltage is that value of voltage neces-

sary to be considered a "high"' voltage thereby causing the output of the inverter

to appear as a "low" voltage. Thus, for proper operation. the dynamic registers

must have their inputs updated and outputs utilized at a clock period less than

this "bleed-off 'time of the charge stored on the gates. For this type of PLA

input/output register scheme,the clock period cannot be too low, or erroneous

results may be obtained. The upper clock frequency is limited by the amount of

time it takes for the basic inverters in the NOR planes to switch to the proper

output voltages once the input voltages and clock pulse are applied. There is a

detrimental effect when several inverters are cascaded in series as well as in

* parallel (fanout) - the voltage must be given time to ripple through all levels of

logic. The time it takes to charge up the additional parasitic capacitances and

logic gates to realize the proper output is the limiting factor for the maximum

clock rate.

To overcome this effect of charge bleed off, an inventive "refresh"' scheme

is utilized in the selectively loadable dynamic register cell shown in Flgure(2. 5).

Using the control signals LOAD and phase I of the system clock this scheme

-. 1 allows the register cell to be selectively loaded and "refreshed"'. This alleviates

the problem of the voltage dropping to below threshold. This circuit may be used

to solve many of the storage applications needed in VLSI systems.

31

Thus, nearly all functions needed to realize a digital system can be

obtained by manipulation of the basic inverter circuit and pass transistor. The

next step is to become familiar with the design methodology.

Figure(2.5) Loadable Register Cell

C. METHODOLOGY

There are several reasons for developing VLSI digital systems. A new need

may force the creation of a custom designed system.It may be required, or

desired, to condense the size of existing designs, usually in the form of printed

circuit board systems, for other applications. Also, improvements in VLSI tech-

nology may allow already functional chips to be made smaller, thereby allowing

more functional units to be placed on a single chip. For whatever reason a sys-

tem is developed, the design usually begins in the mind of an engineer. Existing

functional units such as shift registers,memories, ALU's,PLA'sflip-

fSopsetc.normally provide the building blocks for the design. New functional

units, along with unique methods of interconnection, usually appear in a more

"skeletal" form to clearly define the unit's purpose. The CAD resources available

22

22

to the engineer determine where the pencil and paper approach to the design

can be replaced by ever improving CAD tools.

Since VLM designs deal almost uniquely with inverters and pass transis-

tors. it is not necessary to initiate the design at the schematic level. Ratherthe

skeletal form that is mostly used is called the "stick" layout or design method.

The stick method involves the color coding of the different conducting materials

used on the chip. Green is used for diffusion. Red is used for polysilicon. Yellow is

for the ion implant region. Blue stands for the metal layer. Black represents a

contact cut. In some cases logic symbols are also used in the stick diagram. This

skeletal form is known as mixed notation. For good color examples of the stick

and mixed notation and the corresponding geometric layout refer to [REF.1]

color plates 4 through 8. It should be evident from these color plates that wher-

ever a red poly path crosses a green diffusion path an MOS transistor is formed.

Similarly, where red crosses over green which in turn crosses over yellow, a

depletion mode transistor is formed when the gate region is connected to the

source. The stick methods was mainly developed for hand layout.

However,recent advances in CAD tools and color graphics terminals, allow the

stick method to be readily adapted to computer design thereby alleviating the

pencil and paper approach. Using these sophisticated design tools, stick

diagrams can be drawn and manipulated directly on the color terminal to real-

ize the design. When the designer is satisfied with his creation, the stick diagram

can be automatically compacted (observing critical design rules) and mapped

into the geometric rectangular layout necessary for fabrication. Designers not

having access to this level of sophistication must rely on a balance between the

pencil and paper approach and CAD at this stage of the design.

23

t,, , , ,,o , . . ''''". . .,- -. -' . '. . . .' '".'" . . - . - - " ' - -'

2e. nUrQ. R

CAD tools exist that provide a valuable link between the pencil and paper

approach and the CAD portion of the design. These tools are not necessarily

related to VlI design. ILOGS is an Interactive LOGic Simulator. Before "charg-

ing" into the realm of VLSI layout,circuit extraction. stipple plots, refinement of

the layout and simulation, it is wise to emulate the design using ILOGS, or a simi-

lar tool, to verify functional correctness. For smaller designs, or when the

software resources are highly sophisticated, this design verification step may not

be absolutely necessary. Nevertheless, successful emulation of the design

invokes a sense of confidence in the designer. It is highly recommended that the

first attempt at custom VLSI be initiated with a verification of the design using

ILOGS. The project (16 BIT'ADDER) was initially verified using this method. A

description on how to use the ILOGS program is discussed in chapter six.

3. Dsign 1Th.ls

A key point in VLSI design methodology will now be discussed. Design

rules are layout rules that result from analysis of semiconductor physics and

fabrication processes. It is not necessary for the systems engineer to be

thoroughly cognizant of how the rules were developed. It is necessaryhowever.

for the designer to know what the rules are and to abide by them. Design rules

are geometric constraints placed on the basic rectangles concerning minimum

allowable separationsextensions.widths,and overlaps in the various levels of the

chip. Since various processes in creating VLSI chips are improving and ever

decreasing in feature sizes,it has become convenient to develop these rule in

terms of a length unit" denoted as (N) lambda. Present day nMOS processes are

typically 2.5 microns(.Um). Another way to look at this length unit in this case is

A= 2 .5Am. When using a 2.5 micron process, for example, the minimum distance

allowed between two "wire"runs of poly is 2 times lambda or 5.0 microns.

24

"le.............

However.when the process is improved/decreased to lambda = 1.25 microns,the

rule of 2 times lambda separation still applies but now the actual distance is 2.5

microns. This results from the fact that every dimension on the chip has also

been scaled down accordingly. See [REF.1] color plates 2 and 3 for an excellent

description of the basic design rules.

4. %jildeing Rint,.k Apprnanrh Tn VTI.~ Dliv

A VLSI system can be visualized as a large complex puzzle with the pieces

located in a box called the cell library. The cell library consists of pre-designed,

pre-tested cells in geometric forms that have been created by VLSI design

engineers. Some of the cells may be very basic while others may be quite com-

plex. For an excellent description of several cells contained in most libraries,

refer to color plates 9 through 15 of [REF.1]. Plate 9 shows the correlation

between the stick diagram and actual hand layout of a basic shift register cell.

The task for the systems engineer in order to realize the custom design is to

select,adapt,replicate,manipulate, and orient the proper cells to form functional

units. These functional units are then properly positioned and interconnected to

each other and to the outside world (through the use of bonding pads) to corn-

plete the puzzle-lt is this building block approach to VLSI design that provides

the strongest connection between the chip designer and the systems engineer.

It is assumed that the reader has access to a cell library as well as the neces-

sary CAD tools before attempting a VLSI custom design. The exploration of the

design and construction of the cell library is beyond the scope of this thesis.

Here we are oriented towards the use of a cell library with assorted CAD tools.

5. rAD..Thois

Chapters threefour and five are devoted to VLSI-CAD tools. Howeverfor

continuity, a basic explanation of several of the basic tools is provided in the fol-

% lowing sections.

V2

a. PLA Generator

The purpose of the PLA generator when used in conjunction with the

PLAGUE software is to create a PLA ceU that can be added to the existing cell

library. This PLA cell can then be manipulatedadaptedoriented etc. as any

other of the library cells.

b. CLL-Chip Layout Language

CLL is the software tool that provides the capability for the manipu-

lation. replication, adaptation, orientation, and placement of the various cells.

It also provides a means of interconnecting the functional units with each other

and to the outside world through the use of the "wire-list" commands.

c. DRC Design Rule Checker

The final design is scrutinized by the design rule checker. It will

make known to the designer if and where any of the design rules are violated.

Even at mini-computer speeds,this program's execution tirn t rather Avrgthy.

d. Circuit Extractor

The circuit extractor is used to define nodes in tile design in order

to perform a functional test or simulation.

e. Simulator

The simulator uses node definitions obtained in the circuit extractor

portion and processes information received from the designer. The designer

inputs information and looks for expected results. In the case of the thesis pro-

ject, two 16-bit vectors consisting of l's or O's are used as an input and the sum

of the two input vectors is expected at the output nodes(provided there are no
errors in the circuit).

The above tools may carry different names and exist at different lev-

els of sophistication, but they represent a reasonable cross section of the avail-

able VLSI design tools. CAD tools will be discussed in detail in later sections.

26

D. FABRICATION

Upon completion of a successful design rule check and a correct simulation of

the designit is reasonably safe to assume that the design is ready to be fabri-

cated. To this point, nothing has been mentioned about how the design arrives at

the implementation service,the form in which it is sentor what events take

place after the design is delivered.

1. 7"41a rpnprAtinnJ

One of the products of the chip layout language tool is the Caltech Inter-

mediate Form file (CIF fle).The CIF file is a standard machine readable form for

representing integrated system layouts. Its purpose is to unambiguously

describe the dimensions and layer of each geometric figure (rectangle) to a pat-

tern generator.

2. VOSIS

MOSIS is an acronym for Metal Oxide Semiconductor Implementation Ser-

vice. This is the institution that receives the design in the Caltech Intermediate

Form. The standard means for communication between MOSIS and the designer

is the ARPANET (Advanced Research Projects Agency Network). The CI file is

transmitted directly from one computer to the other over standard telephone

lines. The implementation service,after several preliminary checks,forwards the

CIF file to a maskmaking company.

3. Patta~rn (pn*or ArIA II*kmaking

The pattern generator is a very sophisticated computer driven photolitho-

graphic device that accepts the CIF file as an input. The pattern generator con-

verts the CIF file to a Pattern Generator file (PG file). The PG files are then

used to create the masks through a very delicate "flashing" operation. This flash-

ing operation causes the positions and the dimensions of each layer of rectan-

gles to be imprinted on photo-sensitive material. This material is developed and

27

- - *A.~) (

then reduced in size. The reduced "negative" is replicated many times in a step-

and-repeat fashion in order to produce a template of many identical designs of

dividual layers of rectangles. The individual designs lie abutted to each other

in a side-by-side and top-to-bottom configuration. This template is used to

develop the "working" masks, which are then utilized in the fabrication process

to pattern the design into the silicon water.

4. Paltamning

The working masks selectively allow an intense source of radiation, in the

form of ultraviolet light.electron beam (E-beam), or low energy X-rays to

impinge upon the appropriate layer of the chip surface. This selective exposure

to radiation causes a chemical reaction in an organic material, called "resist",

previously coated onto the chip surface. The exposed resist can easily be

removed while the unexposed resist cannot. After removalacid etching is per-

formed to pattern the design into the silicon. The nMOS process requires

approximately forty-four steps to complete the finished chips.

5. P~eaai

The final step before mailing the completed chips back to the designer is

packaging. The wafer is diced into individual chips. Each chip is cemented into a

package. The bonding pads are connected to very fine wires which in turn are

connected to the package leads. A top cover is then bonded over the chip. The

completed design is returned to the customer. The time period from CIF file

submission to chip receipt is normally three to six weeks.

E. TESTING

There are basically two types of testing that can be done and they depend

largely on the resources available to the designer and the complexity of the

design. Commercial testers are available. They are very thorough, but

28

. 4

expensive. A company in the business of VLSI design may very well benefit from

such a tester. They not only can test various chips for proper operationbut can

- "$ also aid in the location of a design/fabrication error if one should be present. A

custom made testbed is sufficient for many applications, provided that the

design is not too complex. The design of a custom testbed, however, could easily

become more expensive and time consuming then the actual VLSI design.

F. SUMMARY
This chapter has provided a brief, but rather complete, overview of all aspects

of VLSI design. The remaining chapters and appendices provide detailed infor-

matlon on specific software tools,hardware resources ,and custom VLSI design

methodology. The step-by-step approach utilized to a great extent in the

remainder of this thesis should provide the reader with enough information to

embark on a custom design.

= .1.!'

)': 29

44 ir
-

.4 .,
" '. -

" , "' , . .

Prior to attempting a VLSI design using the NPS CAD tools, the designer

must have a "working" understanding of the UNIX operating system and c-sheU

commands. If this is not the case, he should read Appendix A and complete the

included tutorials.

Various source programs comprise the CAD tools which are used to complete

a VLM design. These programs ensure that the output file is in the proper for-

mat and that the chip will be successfully manufactured. In general, these pro-

grams work most effectively when used in the prescribed order. (See Figure 3.1

for a flow diagram of the design process.) The project is first conceived using a

"top-down' approach (i.e., the overall project is conceived and then broken into

lower levels for individual design). Then, if the project is designed using a

"bottom-up" approach (i.e.. if the lowest level ceils and functional units are

designed and checked prior to forming the total design), the task will proceed

more easily and with less time involved.

In order to aid the designer in utilizing the CAD tools effectively, a functional

description of the source programs is provided in this chapter. Careful atten-

tion to the following paragraphs will allow the designer to understand and use

the VLSI CAD tools.

A. LOGIN PROFILE

Each user of the VAX computer has a standard login profile (executive) pro-

gram which is established by the CS Department. This program is executed

each time the user logs into the system and it controls the functions of the ter-

minal. Although this profile is sufficient for using the system commands, the

30

,,Z- %

*9.q

I". %T

CREATION OF LAYOUT

GENERATION OF CIF
(ClL)

DESIGN RULE VERIFICATION
(DRC AND VISUAL WITH PLOT)4

REDESIGN
(IF NECESSARM 17
STATIC ANALYSIS

(STAT)4
REDESIGN

(IF NECESSARY)

14

SIMULATION
(ESIM)

4
REDESIGN

(IF NECESSARY)

SFABRICATION

Figure 3. 1. VLSI DESIGN PROCESS

31

-- .I* **q "a -;.N

designer should obtain, by the steps described below, the standard VL3 profle

in order to use the CAD tools.

The login prole is stored in the user's 'login" directory under the name of

.Iogt and is not listed with a normal Is command. (It can be listed with a Is -a

command which lists all files in a directory.) The VL profile can be obtained by

performing the following steps:

1) Change directory to /vlsil/lib/local/work
ad /vyl/Ub/local/work

2) Copy .login to the "login" directory
op.logn /wmk/(er me)

3) Change directory to "login" directoryad
4) Log off then log back on.

Now, each time the designer logs onto the UNIX system, he will be able to use

the VLSI CAD tools. Additionally, the DEL key will delete previously typed char-

acters (similar to <CTRL>H) and a "period" (.) followed by RETURN can be used

to logoff.

B. FUNCTION OF SOURCE PROGRAMS

The source programs used for VLSI design allow the user to generate a Cal-

tech Intermediate Format (CIF) file, check the file for design rule errors, stati-

cally check the circuit, and simulate the design to ensure correct implementa-

tion. The time involved to complete each of these steps depends both on the

complexity of the design file and on the actual tool being used.

1. Chip 1a_,_t 1_ .n _A_ ,,, 1.

The heart of the VLSI CAD tools is a set of source programs obtained from

Stanford University which combine to generate the necessary CIF file for design

4 fabrication (using the nMOS process) from an input in the form of a Chip Layout

Language (CLL). "CLL is a simple chip layout language, intended as an alternate

to Caltech Intermediate Format for direct coding of layouts."[Ref. 5, p. 1] CLL is

32

W.- -

I

a high level language which makes the task of designing a VLSI circuit easier

than direct coding in CIF. It is written in the "C" language.

CLL has the following advantages:

1) It encourages bottom-up design by allowing small circuits to be
developed and tested prior to being called by the "central" program.

2) It simplifies the design process by using defined commands which
are easily memorized and used.

3) It allows calls to stored library cells which have been validated
and tested.
4) It takes advantage of redundancy by allowing iteration of successive

calls.

5) It is intended for lambda-grid design which eliminates the
problem of changing scales.

The disadvantages of CLL are that it is capable of right-angle designs only and

that it depends heavily on the designer's ability to develop a layout which is logi-

cally correct and geometrically compact.

The processor for CLL is the program cli. As can be seen in the manual

page for ell (Appendix B), its basic function is to process the cell library exter-

nals and user written c1L files to create a ci.f file in CIF. The library externals

are a set of designed cells in CIF which have been combined into one library file.

The objective recommended for the designer is to construct various files in CLL ,

format using this library (if needed), along with custom designed cells, and then

N use the CLL processor (cli) to obtain check plots and a complete CIF file in out-

put format. The specifics of this task and the use of the defined options for all of

the source programs will be explained later in this thesis.

The CLL processor uses several programs to complete its tasks. Gen-

erally, these programs operate automatically through control of the CLL proces-

sor, which consists of a command program (ell) and a CLL compiler (cl?12). Fol-

lowing is a list of these programs and their general functions. The manual pages

33

It e" . . " "

Z. .

for these programs, which are given in Appendix B, can be called with the man

command.

a. lf

The cif command will cause the input cif file to be converted to a

cifout format so that it can be plotted at the GIGI terminal or the Versatec

plotter. That is, it converts a file from CIF to binary form. This program can be

run independent of liL The cifout file format (flle. co) is documented as CIFOUT

in Appendix B.

b. Cllood

COioad is called by cll (or can be used independently) to concaten-

ate all of the .c'if files that are given as input along with any library CIF files that

are needed to produce the total CIF file.

c. Merge

For cases requiring the merge (or concatenation) of cifout files

(sorted or unsorted), the merge program is used. The sorted cifout file is

labeled fle.sco while the unsorted cifout file is given the label of file.co. CU1 uses

merge to combine the sorted cifout file of a design with the unsorted cifout file

generated by the Design Rule Checker (DRC). The program can also be used

independently to merge several .sco files for a combined plot.

d. Rplot

lplot is the program that allows the designer to plot the design (or

part of it) on the Versatec plotter. When used by cll, the sorted cifout file is gen-

erally scaled to a size that can be plotted by window.

If used independently, rplot option 4 will scale the plot. This pro-

gram can be used to plot any sorted cifout file for geometric and design rule

visual verification.

34

.1

-7. Nbu
I

ea. Roort

,* In order to sort a cifout file so that it can be plotted, cll calls ruort

Any cifout Me that is to be plotted must be sorted by x-coordinate due to the

* requirements of rplot and the Versatec.

f. TpIoL

The tplot program generates a terminal plot (in color) on the GIGI

terminal. The input must be labeled as a sorted cifout file (fl/e.sco) even though

the terminal does not require a sorted input. Tplot can be called independently

or through ell. It should be used for quick checks of modifications to a design

(since the Versatec plot is time consuming). Window is also called to scale the

plot if tilot is used through ell.

g. Window

Both rplot and tplot receive scaled data from window when they are

called by cll. (This occurs only if the 4 option is used.) Additionally, window is

capable of picking a selected portion of the total cifout file for plotting. This is

particularly handy for a detailed plot of a small section of a large chip design.

2. .9lippnrting Prngramrvq

5"' In addition to cll and its associated programs, there are a few programs

5" that can be used to aid in the completion of a VLSI design. These programs run

independently of cll. They are documented in Appendix B and can be called with

the man command.

a. Cifar

The cffar program allows the designer to develop an archive of CIF

cells (files). This is very helpful in creating a library of "custom" cells which can

be called in the main design file. This library can then be made a permanent

record for future designers.

35

% ,s ... ,% % % o ° " ° " ' • ' ' ' "- , "" - , "" " "

b. Canvert

In order to make any sense out of a cifout file (sorted or unsorted),

the file must be converted from its binary form into ASCII form using convert.

This program can be used to find a problem in a cifout file that will not plot. The

output should be directed (>) into another file name. To get this file back into

cifout format, it must be converted back into binary form using unconvert.

c. Ptagen

Flagen is a program that allows generation of a Programmed Logic

Array (PLA) from a set of input and output specifications. Since a PLA is a very

"regular" circuit, it can be used effectively in VLSI design. The PLA can be gen-

erated directly with plagen or indirectly using plague. The output is a CIF file

which can be used as an external file to be called by the main design file.

d. Plague

To generate a PLA using output equations, use plague. This function

converts the output equations of a PLA to the required inputs for plagen. There-

fore. its output is usually pipelined directly into the plagen program.

e. Unconvert

Unconvert is used in conjunction with the convert program. It con-

verts an ASCII file into binary cifout format. Its only use is a conversion after

convert has been used to read a binary file.

As the feature sizes of integrated circuits diminish, greater importance

must be placed on design rules. Separation and width errors could easily prove

disastrous in an otherwise functional circuit. For this reason, the Design Rule

Checker (DRC) should be used to indicate any design rule errors.

After a circuit has been designed and a sorted cifout file has been pro-

duced (using ell), the designer can determine the presence of most design rule

3

- -~. . -- -. ".

7 -7

errors using the DRC. The DRC specifically checks for minimum separation and

width errors within each layer. To do this, it must first determine any connec-

Uvity within the circuit. (Two poly rectangles side by side are a larger rectangle,

not a minimum separation error.) However, it does have its limitations. For

example, if two rectangles on the same layer cross, a short will exist which is not

detected by the DRC. Additionally, if a contact is not fully connected, spurious

errors may result.

The DRC processor is drc. It is documented in its manual page (Appendix

: B). Again. this tool is composed of several source programs which perform vari-

ous tasks of this extensive design tool. Since the source programs run automat-

A ically and are not used independently, they will not be covered in this thesis.

As described in the manual page, the output of dre is stored in file.drc.

Additionally, a cifout file is generated (fle.co) which can be merged with the

sorted cifout file and plotted on the Versatec or terminal so that the designer

can locate the source of any design errors. The normal procedure is to deter-

mine the source of any design rule errors, correct them, and then run the dre

program again. Once all errors have been eliminated, the circuit can be
simulated.

Prior to simulating a generated CIF file, it is necessary for the designer to

convert the file into a representative circuit with defined node numbers (or

names). This is required of most simulators. To do this, there are three pro-

grams that are used. Each of these programs is a c-shel file (Appendix A) which

calls one or more source programs to complete its task. Since these source

programs run automatically and are oenerally not used independently, they will

not be covered in this thesis. The three c-shetl programs are documented in

Appendix B and are further explained in the following paragraphs.

37

u"1

a. Etract

The first step in circuit extraction is to convert the CIF file into a

* circuit with associated node numbers as reference points. These node numbers

are assigned by extract with each different logic level having a separate node

number. Extract also generates the necessary output files for plotting. A plot

* can then be made using node-pot..

b. Node-pAot

The plotting function for an extracted circuit is node-plot. The out-

put is a Versatec plot (the terminal cannot be used) of the designed circuit with

nodes labeled. The dot (stipple) pattern for the different layers is not the same

as that of the cll output, but this should not cause much confusion.

The purpose of obtaining this plot is to allow the designer to define

node names to be used in circuit simulation. Once the numbers for the desired

nodes have been obtained, they can be combined with appropriate names in the

.sym file. As a minimum, the power node (vdd) and ground node (gnd) must be

defined.

c. Sim

The last step in the circuit extraction is to generate the simulation
file (.sn). Sim is a c-shLL program (Appendix A) which converts the .Syvm,

.node, and cap files into the format required by simulators. The output fle.sim

file can then be checked using the Static Checker (stat) or simulated using the

Event Level Simulator (esim).

5. St.atic.Chbpen~knev

Prior to trying an actual simulation, it is generally advantageous to put

the design through a Static Checker. Stat will perform "two major tasks, check-

ing gate ratios and looking for switch logic driving switch logic, as well as other

tasks of less importance."[Ref. 6, p. 7] This step in the design process gives the

~38

4'

designer more confidence in the design of new cells but is of little use if only

library cells were used. Sita is documented in Appendix B.

6. ymnt T.vg-1 I nn aiMtnr

After a designed circuit has been "extracted," it can be simulated using

the processor for the Event Driven Switch Level Simulator (esim). This is an

important step in the design process since it assures the designer that the cir-

cult will perform to logic specifications. Although this simulator does not test

for timing problems (such as rise and fall times, or race conditions), it does pro-

vide a good test of the logical accuracy of the designed circuit.

'. Esim is an interactive program which expects inputs from the user. The

.allowed inputs are described in detail in the manual page in Appendix B. After

the design has "passed" its simulation, it is ready for manufacture.

V

4' 39

- .- . . . - .RR AI"I' iI L"I . -T. .

.IV

Once an integrated circuit (chip) has been designed, simulated using a logic

simulator (eg, ILOGS), and hand drawn as a geometric layout on lambda grid

using the methods established by Mead and Conway [Ref. 1], the designer con-

verts the chip into the Caltech Intermediate Format (CIF). This format is

required by most fabrication facilities. For anyone who has attempted a direct

conversion from layout geometry to CIF, the task is tedious, time consuming,

and very susceptible to mistakes. An alternative route is to use the Stanford

Chip Layout Language (CLL).

The CLL processor (cii) produces an output CIF file that can be sent directly

to a fabrication facility. However, since it does not automatically check for

design errors, additional checking is required. If the designer adheres to the

following guidelines, the task of converting a geometric layout into a CIF file is

much easier and less time consuming.

A. TUTORIAL

"CLL is a symbol-oriented language"[Ref. 5, p. 4] This means that the

designer should divide his chip into a hierarchical structure and build each level

as separate units with the "higher level" units combining the "lower level" units

The "top level" unit then creates the entire chip. For example, consider the fol-

lowing structure:

A

, B C

,I I I

D E F G

* 40

The units (symbols) D,E,F,G are converted to CIF' first. D and E are then com-

bined (possibly with additional geometry) by symbol B while F and G are coma-

bined by symbol C. The total chip is created with a "call" of B and C by thie

imain''fie, A.

To allow this hierarchical "bottom-up" approach. CLL uses a high level

language format which is an extension of the programming language "C." Each

symbol, as well as the "main" chip fle, will be a "C" file (Appendix A gives this

format.) written by the designer using ClL and given a label of flle CU. The CLL

processor can then be used to convert the symbols into CIF.

The following tutorial lists the allowed CLL statements (commands) and indi-

1. H.-a

The top portion of a cU file consists of statements which defn the con-

stants to be used in the te or cnk other symbols to the fle. The allowed state-

* . ments are:

a. Comments

Comments are used to make the file more readable. The format is

/0 .commnts] 0/

There is no restriction on the location of comments; however, comments cannot

be nested.

b. External Symbols

CLL allows the definition of external symbols. This is useful in

defining the symbols of the cell library or any ,.'tf files generated by plagen. The

formal is

external name (mfl bounds Lz., Uyj zenql.n)

41

... . , * . .,a. '' * -. . . . - . ." , '- _ . - _ , i

This statement defines any reference to name as being a CIF symbol with

number, ciJft. The smallest box which can be drawn around this symbol (bound-

-. ing box) has its lower left corner at (L!z.Uy) on a lambda grid. The length in the

x direction is zian and the length in the y direction is yLem

c. Defines

To define global constants which will be used in the body of the file,

use the format

dp de n, vaLue

where i must be in column one of the file. Any reference to name causes

replacement by value. This vaeue can also be an expression enclosed in

parenthesis. For example,

define h-z (lix+xzen)

gives the value of LLz+zLen every time Irz is stated.

d. Includes

I include ftle-nv

includes the stated file along with the present file. This acts in the same manner

as "linking" two files together or actually combining both files into one.

e. Conditionals

With complex designs, using many levels of hierarchy, there will be

much linking of files together. This complexity can lead to coding errors due to

statements involving undefined symbols. Additionally, because individual files

may share the use of simple cells (e.g., drivers), there must be a way to prevent

re-defining a cell within a linked file. The following formats can be used to

42

, , , " . " r , , . - . , ' , ,I ., . . ' , , , , - . .. ,-- . . . - -. . , .. . - .--. - .-- 7- -

V-_ o' 7- .71 -

eliminate these problems:

ifd INWnA
statement

(included only if nan
has been defined)

andif

or

I Indf awa
statement

(included only if hena
has not been defined)

Iena!

2. Svnhnal Dlelnitinn

The symbol definition includes a symbol name (25 or fewer characters),

an optional CIF number, and an optional bounding box. The format is

ftwn. [(tff bounds Uz.UY zleniylevt)]

Normally, the CIF number and bounding box information are omitted since ell

computes this information. If a CIF number is specified, subsequently encoun-

tered symbols are given CIF numbers sequentially from that number.

3. Bn4d

The bulk of the .c11 file is contained in the body. The opening brace (Q)

indicates that CLL statements are to follow and the closing brace (1) indicates

that the file is ended. Positioning of these braces and of the statements is not

critical to ell. However, indentation is recommended for ease of debugging. All
statements must end with a semi-colon (;).

43

The following statements are allowed in the body:

a. Comments

Comments can be used in the body to make the file more readable.

They follow the same format as described in the paragraph under Header.

b. Rectangles

The CLL statement for defining a rectangle is

retUz.Uy enaj~ea [layer];

This statement produces a box whose lower left corner is at (tL,UY) on a lambda

grid and whose upper right corner is at (I!z+zen,Uly+yt/en). The layer of the

rectangle is layer if it is specified. The default layer is the last layer defined in a

layer statement.

c. Layers

A default layer can be defined with the statement

This statement is especially useful if the file is to have several rectangles on the

same layer. This default layer is used any time that an optional layer is not

specified and remains the default layer until changed with another layer state-

ment. Layer can be any one of:

diffusion. diff green
poly,red
metal.blue
contact, cut,black
implant,yellow
glass
metal2
poly2

44

d. Wires

Wires are used to connect distant points within a symbol. The basic

CLL statement is

wire [Ia r] z.Y wwliast;

Again, laijer is optional with omission implying use of the default layer. The

starting point of the wire is indicated with x,y. Wirelist controls the path and

size of the wire and can be one or more of:

x,y move to (x.y)
layer change layer
u up # lambdas
d down # lambdas
rj right # lambdas
1 # left # lambdas
x # move to (given x.same y)
y # move to (same x,given y)
w # set width to # lambdas

CLL requires a space between each entry of the list. A change in

wire layer from metal to diffusion (or vice versa) or from metal to poly (or vice

versa) causes automatic generation of a "via". Changes in wire layer from poly

to diffusion cause generation of a "butting contact" which is not recommended.

If the width is not specified, the default width for that layer will be used. The

default width for any layer is the minimum allowed width for that layer,

An example of a wire statement is

wire 10.70 u 10 r 50 diff r 10;

This wire would start at (100,70) in the default layer, then it would move up 10

lambdas and right 50 lambdas before changing layers to diffusion and moving

right 10 lambdas.

45

Uj B o,. -.-

'I I

e. ias

A via is a connection between metal and diffusion or metal and poly.

This feature is useful in interconnecting input/output pads with their associated

circuit points and for running wires that must cross paths within the chip. The

format is:

via UiAy bzr;

The result is a 4 lambda square of metal, a 2 lambda square cut, and a 4 lambda

square of zojer whose lower left corner will be at (,2,Uy).

f. Calls

In order to invoke a defined symbol, a symbol call is used. It has the

form

nve(UZ, Uy h [Lwnfaimazions]);

Since CLL always places the lower left corner of the symbol's bounding box at

(0,0). placement of the symbol requires a shift in location (and possibly a rota-

tion). The call first performs any transformrations on nazme and then locates its

lower left corner at (OU,l!y). All transformations leave the lower left corner of

the bounding box at (0,0). Allowed transformations are:

flip ud flip up-down
flip Ir flip left-right
flip rl flip right-left
rotate 0 rotate 0 degrees
rotate 3 rotate 90 degrees clockwise
rotate 6 rotate 180 degrees clockwise
rotate 9 rotate 270 degrees clockwise
rotate 12 rotate 360 degrees clockwise-

For example,

.4

oA - . . , , ., * , . .

, ~cell(1WO. O nip lr rotate 9);

fips call left to right, rotates it 270 degrees clockwise, and then places the lower
left corner of the resulting bounding box at (100,500).

g. Iteration

When a symbol or cell must be repeated several times in a con-

sistent fashion (as with adding drivers to a PIA). the symbol can be iterated

using

iterate n.y [zpitchkyp~ch] symwbol-nuw(UzLly [Lv.ufovwimina]

In this statement, nz indicates the number of times to replicate symnbol-nmve in
-.4q

the x direction and tj indicates the number of duplicates in the y direction. X-

pitch and V-pitch indicate the x and y spacing respectively. Either, or both, can

be replaced with default to indicate that the bounding box dimension should be

. used for the spacing. If neither pitch specifications are stated, the default will

be the bounding box dimension in both directions,

h. Expressions

As in the "C" programming language, numbers in CLL can be

replaced by constant expressions. The allowed operators for these expressions

are:

- unary minus
subtraction

+ addition
multiplication

/ division
%. modulo

47

0 4 t , '# '', ." 4, ', ' / " .. . - .* . • .- " . " . ' . _. ' ' - . •... -"

In addition, there are 4 special operations:

dx~symbol-name return width of a symbol
dy(symbol-name return height of a symbol
pwidth(expr) return width of metal

(where "expr" is in milli-Amps)
!expr return cursor location plus "expr"

See Reference 5 for examples.

i. Print

For debugging a problem file, the statement

print(zpr)

can be used. This will cause the value of ezpr to print out on the terminal.

B. CELL LIBRARY

Reference 7 provides a description of the basic library cells developed at

Stanford University. These cells can be "called" using a symrrubol call if the follow-

ing statement is placed in the header of the cll file.

include "/vlsi/lib/local/..ext c"ll

The s.szt.cU Mle is a CLL file which "defines" the individual cells in the library.

(The actual CIF file for the library is stored in "/vlsi/lib/libs.cif.")

C. USING CLL

There are several methods by which the designer can prepare a geometric

layout prior to coding in CLL. This thesis will not discuss any of these; however,

it is imperative that the design be logically correct and that it consist of only

nMOS rectangular shapes assembled at right angles on a lambda grid.

If the design contains any PLA's, the CIF files for these can be generated

directly using plagen or plague. These CIF files should be labeled in the form of

48

4.'' .,.". " ..' -. ..,.. ''. . ." ' ".".. . . . '-.' " .. '''.. ,. -. - ." -" ' , '". .. ,_ •,'. ,"'- . . .' ..-. ":" ,.. -. '.,.. :: ':

-file.c-if. Since the plagen function does not produce input or output drivers for

the PIA, a CLL file (fle. cU) has to be created for this addition. This CLL file must

"call" the PLA CIF file and then attach the drivers.

In order to use the CLL processor (cll), a .cU file must be created for all of the

symbols of the design and for the "main" program. Although it is possible to

include more than one symbol in a single .cll file, this is not recommended. For

simplicity and ease of construction, the designer should build separate files for

each symbol. The following paragraphs describe the procedures for creating

these files and producing the desired CIF files.

1. MakiEas

The first step in using CLL is to create a. cIl file for each symbol. This file

can be created using the vi editor and must be labeled in the form of file.cdl.

The basic form of this file is given in Appendix C, along with a summary of the

CLL commands.

If the design was originally drawn on a lambda grid, the CLL ile can be

coded directly using CLL commands and the desired coordinates from the lay-

out. The best approach is to place the major components of the symbol and

then add the interconnecting wires. When the file is complete, ell can be used

for plotting (for visual error checking) and for creation of the CIF files.

2. Plntting

Throughout the coding process, it is desirable to produce check plots so

that the designer can verify correct positioning of wires and transistors in a

symbol. This can be accomplished on the GIGI terminal or on the Versatec

plotter using clI. In either case, the best procedure is for the designer to gen-

erate a sorted cifout file (file.sco) before doing the plot. (It is possible to plot

directly without storing the sorted cifout data; however, duplicate plots are not

as easy to produce.) To generate the sco file, use the command

49

a,.n.nl.m • m d ' - '. . " : ""

en[optins]fg..cU fla. ciffla2.cI C...

The options are listed in the manual page of Appendix B. The particular options

for this operation are -1 and -D. Fie.cll is the symbol file and the cif fies are

any CIF files that were generated by the designer and "called" by the CLL file. If

library cells were used, the -I9 option must be used. The output is placed in

flle.sco.

The fastest way to get a visual plot of a sco file is with a terminal plot.

The command

Cl -T [o-ption] Pe.so

generates a color plot of the sorted cifout file if a GIGI terminal is used. The

options of interest in this case are one or more of: A. -n. -z. -y. and -D (Appendix

B).

The other way to get a plot produces a hard copy on the Versatec plotter.

This approach uses much computer time and should be avoided during heavy

usage times. The command is

cU -P [options]ftle.sco

where the options can be one or more of: -b. -g. 4, -n. -x. -y. -s, -S. and -D (Appen-

dix B). The stipple patterns are defined in Figure 1 of Appendix B.

-p 3. CrAtinq C1

In general, a CIF file must be created only for: (1)node extraction of sym-

bols; (2)the total design; or (3)fabrication of the design. In the first two cases,

the command

el -C [Opto] 1. cU ftle I. cif PLP f...

50

... : : - .:. ;.:.:..:: - .:.. . . .- :-.....-...........-

77.. 7

creates a file labeled flie.c'if which is the CIF file combining all "calls" and

"includes" of the flle.cll file. The two options that can be used are -D and -i

(Appendix B). If library cells were used, the -Is option must be used.

To generate the final CIF file (which can be fabricated), use

Cl -F [Opiio] fl.cllfLal.ciffllepa cif...

The output is a CIF file labeled final.cif. The options are the same as listed

above.

D. EXAMPLE

As a simple example of the use of cll, consider a gray-code-to-binary-code

converter with reset, using a PLA. It the inputs to the PLA are defined as reset,

gray, and zO and the outputs are defined as binary and XO, then it can easily be

shown that the output equations are

binary = x'&reset'&gray xO&reset'&gray
X = xO'&reset'&gray - xO&reset'&gray'

(for complement, & for AND, - for OR)

Note that the combination of zO and X0 is the feedback requirement for deter-
mining the "state" of the PLA and that the input gray code is serial with the

most significant bit (MSB) entered first. Since Y'O and binary are identical, it

would have been feasible to use only one of them as both output and feedback;

however, since the PLA generator produces an "even" number of outputs, they

are both used.

In order to generate a PLA CIF file using the above equations, an input file

must be created for plague and the resulting output "pipelined" into plagen.

Figure 4.1 gives the input file pla.

To generate the PLA CIF file, the command

51

• A " °""""
°

" i

*"1! t ', ,,,, "r -' " . '

plague < pla I plagen > placil

,...

is issued. The result is a CIF file, pLa.cif and a schematic file, pla.schem.

CIF# 901:
-'. in; reset gray xO;

out: XO binary;-: binary = xO'&reset'&gray+ x0&reset'&gray';* XO = xO'&reset'&gray+xO&reset'&gray';

Figure 4. 1. PLAGUE INPUr FILE (PLA)

Additionally, the terminal responds with information about the PLA:

(3 input 2 output 2 term PLA);
(external pla (cif 901 bounds -- 15,0 100,31);

The first of these lines can be added to the plfc.cif file for documentation pur-
poses. The second line can be used as an "external" statement in a c file
Note that the bounding box of this PLA has its lower left corner at (-.5, ,) and the

upper. right corner is at (85,31). Figure 4.2 is the pla.cif file with the added

documentation.

Since the PLA is computer generated and was not drawn on a lambda grid, it

is necessary to plot it so that the drivers and interc necting wires can be

added. However, the file must be modified with

C 901 T 0,0;

at the end of the file. (Cll requires this modification.) A command of

Cli -Is pla.clf

52

C. ., ,, . . . -.-.. .

(ext 12);
(ext 14);
(ext 14);
(ext 15;

ext 1);
•ext 17);
(ext 18);
(ext 2);
Sext 22);
(ext 23);"-: (ext 24)

: -' : ext 25);

DS 901 250, 1;
(3 input 2 output 2 term PLA),
C 14 T-15 16;
C 12 T 0 16;
C 13 T 0 24;
C 23 T -4 7;
C 23 T -4 15;
C 12 T 16 16;
C 13 T 16 24;
C 24 T 23 7;
C 23 T 12 15;
C 12 T 32 16;
C 13 T 32 24;
C 23 T 28 7;
C 24 T 39 15;
C 15 T 48 16:
C 16 T 48 24;
C !2 R 0 -1 T77 16;
C 22 T 64 9;
C 21 T 64 20;
C 22 T 72 9;
C 21 T 72 20;
C 14 R 0 -1 T 77 31;
C 13 R 0-1 T 85 16;
L NM;
W 4 -13.16 -13,29 61,29;
DF;

Figure 4.2. PTA CIF

53

LIN..

generates the pla.sco fe. To plot this sorted file, use

C:.-P-g55 5 pla sco

Figure 4.3 gives the result of this command.

From Figure 4.3 and the documentation of the input and output drivers in

Reference 7, a CLL file can be created to form the converter symbol. Figure 4.A-

is a possible solution for this CLL file (converter.cll). A sorted cif out file can now

be created. However, first the pLo.cif file must be modified by removal of the

two lines that were added previously. Then a command of

oil -Is converter.cli pla. cif

will generate the Me converter.sco. This file can be plotted on the GIGI terminal

for a quick check using

cll -T converter.sco

or on the plotter with

ol -P i15 -g5.5 converter. sco

(Note that the resolution of the terminal may not be sufficien'. for the designer

to detect errors with the whole converter plotted To get better resolution on a

specific area he should window the area using the -x and -y options.) Figure 4.5

gives the re,,dt of the 'Versc.tec plot.

Once the symbol has been visually inspected and all errors have been

corrected, a CIF file can be created with

cll -C -Is converter.cU pla.cif

54

1. : '".". '.,- ,t .'-o-.2 ,:.2 -:. ., -,i -i -: -: -i : --- --. --; : -. - - - - -.. . . - - - -- . . .:

scal 13*

Figure4.3. POT1OF LASc
-~55

I:

/ include external definitions for library cells */

include "/vlsi/lib/local/s..ext.clr'

I* define external reference to pla */

external pla(cif 901 bounds -- 15,0 100,31)

gray-to .binaryO

/*place pla*/

pla(0,0);

/*attach input and output drivers*/

iterate 3.1 PlaClockln(15,-58);

PlaClockOut(76,--53);

/*connect gnd, vdd, and clock lines*/

wire metal 2, w 4 d 23 r 14;
wire metal 73,1 w 4 d 16 r 4;
wire metal 62,--22 w 4 r 6 d 21 r 9;
wire diff 57,--58 w 2 d 2 metal r 22 u 5 poly u P:
wire diff 25,-58 w 2 d 2;
wire diff 41,--58 w 2 d 2;
wire poly 87,--53 w 2 d 2;

Figure 4.4. CONVERTER.C'L

56

'.,

1 1 4--

5-hI

-- 7 -

Chounds 00 0.0 100.0 930
gi ld 5 3
scale 15

Figure 4.5. PLOT OF CONVERTTER.SCO

57

V. nM.RTr VAT.T"ATION

Throughout the design process, the designer will wish to improve the

confidence in his design using various CAD tools. These tools have been designed

to overcome the most common weakness in creating a VLSI chip - human error.

Although the perfect designer will have no need to validate a design against pos-

sible errors, most of us want to ensure that our finished product performs its

desired function.

Use of the validation tools has no definite prescription. Each designer will

have to decide as to what stage of the design process (what level of symbols)

should be validated at a particular time. However, to keep the validation and

debugging times to a minimum, we recommend that each "major" symbol be

validated separately. The actual tools that can be used are the Design Rule

Checker, the Static Checker, and the Event Simulator.

A. DESIGN RULE CHECKER

The Design Rule Checker inspects the sorted cifout file for design rule viola-

tions. In order to use the DRC processor (drc), the symbol must have a sorted

cifout file (file.sco). The generation of this file is described in Chapter 4 of this

thesis. A command of

dreffic.sco

initiates the design rule check of the stated file. (See the manual page for DRC in

Appendix B for details.) As with all of the validation tools, the DRC is time con-

suming and should be planned for times of low computer usage. The outputs of

the DRC are flie. drc and file. co.

58

1. ynhiatinn Wf NA12tpg

Pile. -c provides a list of the lambda coordinates for any errors detected

by the DRC processor. Each error is classified by type; however, one error may
%cause several coordinates to be listed. A comparison of the error coordinates

with a plot of the symbol layout provides the designer with the source of the

problem(s).

If the designer wishes to plot the output of the DRC combined with the

actual layout, the command

cU -P [options] jU.co fi,.co

can be used. The result O.U be a plot of the symbol with "black" areas indicating

the areas of design errors. Additionally, a terminal plot can be made using

ell -T [optiozs] fle.sco flaj.co

with "white" areas indicating the areas of design errors.

2. mpli

As an example of the use of the DRC, consider the CLL file wrong.cll (Fig-

ure 5.1). This is the same as converter.ct (Figure 4.4) with the exception that

the starting coordinate for PlaClocdn has been changed to (16,--58) vice (15,--

58). This one lambda shift of the input drivers gives design errors for evaluation.

The first step in the validation process requires the generation of a sorted

cifout Me. The command

ClU -4a wrog-.cU pla.cif

will give the Mie wrong.sco. Now, to use the DRC, a command of

59

,_-.

dre wrong.sco

is issued. (Prepare to wait, the DRC is extensive and slow.) Figure 5.2 gives the

output file urong. drc with a list of the design errors.

/0 include external definitions for library cells /

include "/vlsi/lib /local/s-ext.cl"

/0 define external reference to pla ./

external pla(cif 901 bounds -15,0 100,31)

fray-Lo..binaryO

/*place pla*/

pla(0,0):

/*attach input and output drivers*/

iterate 3,1 PlaClockln(16,-58);
PlaClockOut(76,--53);

/*connect gnd, vdd, and clock lines*/

wire metal 2,1 w 4 d 23 r "4;
wire metal 73,1 w 4 d 16 r 4;
wire metal 62,-22 w 4 r 6 d 21 r 9;
wire diff 57,--58 w 2 d 2 metal r 22 u 5 poly u 2;
wire duff 25,--56 w 2 d 2;
wire diff 41,-58 w 2 d 2;
wire poly 87,--53 w 2 d 2;

Figure 5. 1. WRONG.CLL

A merge of the sorted cifout file with the flMe wn ong.co can be produced

with the command

eli wrong. 3o wrong. co

The output is stored in nerge.sco and can be plotted on the Versatec or the

6o

Poly mn width errors:
16,60
16, 60
1?, 63
18.62
24 60
24.60
25. 63
26, 62
32, 60
32 60
33 63
34.62
40,60
40, 60

,41, 83
42 62
48, 60
4860
49 63
50 62
56,60
56, 60
57, 63
58,62
Dif min width errors:
24, 4
25.2
25, 3
24, 5
26, 2
26,2
26,3
26,5
40,4
41 2
41 3
40,5
42,2
42,2
42,3
42,5
Metal min width errors:
Contact metal cover missing:
Contact poly or diff cover missing:
Poly to diff-contact separation error:
There are 35 transistors
Poly separation errors:
Di? separation errors:
Metal separation errors:

(continued on next page)

81

V , * *. - " - , . .. ' " "r " " ' ,.' '" " " ' " ; ": .-. .. .-. - -'- -- .- , .. . ,

Poly to Diff separation errors:
18, 62
19,61
23,62
24, 61

35, 61
39, 62

40, 61
50, 82
51. 61
55.62
56,61
]mplant surround error:
Poly-Diff-transistor surround errors:

42,3

Figure 5.2. WRONG.DRC

terminal. Or, a plot can be obtained directly with the command

cl -P -g5.5 415 wrong.uco wong.co

Figure 5.3 is the result of issuing this command and can be used to evaluatU, the

errors detected by dre. The error points are indicated by "dark" blocl,-.

From Figures 5.2 and 5.3, the following errors can be seen:

Poly min width and Poly to Diff separation errors
in the areas of:

17,60
25.62

33,62
41,62
49,62
57,62

DL min width & Poly-Diff transistor surround
errors in the areas of:

25,3
41,3

A closer look at the plot indicates that all errors are caused by the shift in

placement of the input drivers and can be easily corrected by changing the "cal-

ling" coordinate of the input driver.

62

,CoX

r it 20 It 2__ j* 1 .or f9ri__r W. br 70 7%' Po i

- .- - - P -v --

Htt :11
bt I

I.,-

4bud .. . 0309.

XCFbuds000010. '.

cbuud s . 10.0 96.0000 3.

grid Z; 5
*0 ~sal~e 13

Figure 5.3 PLOT OF WRONG.SCO AND WRONG.CO

63

%lei

As an alternate method for determining the source of DRC errors, a ter-

minal plot of the 'window' around an error coordinate can be used. For

example,

ell -T -xO.25 -750.70 merge.sco

indicates one of the problem areas.

B. CIRCUIT EXTRACTOR

The Circuit Extractor extracts a circuit from a CIF file so that it can be simu-

lated. The manual page for the Circuit Extractor (EXTRACT in Appendix B) gives

the commands necessary to perform an extraction. If it is desired to extract a

symbol for which there is a CIF file labeled flte. cif, then the proper command is

extract fie

The result of issuing this command wil be generation of flo.def, flte.cap,

,fiL.gate, file.node, fiLe.rec, and file.sym..

1. Pntting

A plot of the node numbers which have been assigned to the symbol can

be obtained with the command

node-plot file

This produces a Versatec plot of the layout with stipple patterns as defined by

Figure 2 of Appendix B and node numbers at various points throughout the plot.

64

-° -.- . -.e° 4
°

-

2. DflAnin Nodes

In order to.evaluate a circuit under simulation, it is necessary to assign

names (labels) to selected nodes in the circuit. As a minimum, the power bus

iN (avdd) and the ground bus (grnd) must be identified. To do this, the flte.sym file

has to be modified. (It is empty.) Referring to the node-plot output, the designer

can use vi to modify the flie.sjm file by making a list of node numbers with their

associated names. For example, the most commonly labeled nodes are power,

ground, inputs, outputs, and clocks. Once a node has been given a name, it can

no longer be referred to by number.

3. rrPating A Sirn1latinn P1ilP

A simulation file (.simr) is required by both the Static Checker and the

Event Simulator. If an extraction has been performed on a symbol flie.cif and

the ftle.snry file has been modified, then the function sim can be used to

generate the simulation file. It is invoked with

mm fl/

The output is flle.s-im and can be used for static checking and simulation.

4. Example

The example ot Chapter 4 can be extracted by issuing the command

extract converter

The extracted circuit can now be plotted with the command

nodepot, converter

The terminal responds with

65

,.4..- .. , ,-- ,.- ,. ,- , ... --.-.. .. .- -

-7 .7.77

type-stipout /vlsi /tmp /converter. stip [A-A]--when ready

This statement indicates that the sorted data for the plot fits into a 240 lambda

strip (A) and can be plotted with
2 .

StIpout /vlsiftmp/converter.sUpA

Figure 5.4 is the result of issuing this command.

Using the node numbers as shown in Figure 5.4, a .sym file can be created

to label the power, ground, input, output, and clock nodes. Figure 5.5 gives this

converter. sy ile.

The simulation file can now be created with

mim converter

66

- &. mm . -.

Figure 5.4. PLOT OF CONVERTER STIPA

687

= ..

I

13 gridoi
3 vdd
105 phil
42 phi2
108 reset
109 gray
72 binary

Figure 5.5. CONVERTER.SY-M

C. STATIC CHECKER

The command

,taLftlesim

initiates a static (dc) analysis of the symbol fie. Stat accomplishes this by using

a data base consisting of a set of transistors, each with a gate, source, drain,

length, width, and type (currently enhancement, depletion, and intrinsic), and a

set of nodes. The program tries to determine the threshold drops on the nodes

and the use of the transistors by adding to this data base. Finally, having under-

stood as much of the circuit as possible, the program makes a pass over the

transistors that are still not understood and indicates any that are obviously

incorrect.

As stated in the manual page (STAT in Appendix B), the two outputs of stat are

standard output containing an entry for each potential error and standard error

output containing the number of nodes, inverters, etc.

1. 1Rhzln~tinQ O~f QW~P,,US

The manual page for stat (Appendix B) gives a list and explanation of the

outputs. However, a few comments are necessary to prevent an incorrect

analysis. Prior to beginning a static check, it is necessary to identify the power

(vdd) and ground (gnd) nodes of the circuit. The Static Checker identifies input

88

nodes by locating any cnhancement transistors whose gate is ground, source is

the node, drain is ground, length is 2 lambda, and width is greater than 39

lambda. If no input nodes are found, the "Propagate" output will not be valid.

Some of the errors are repeated in both the outputs. For example, a chip con-

taining 5 ratio errors (all with a ratio of 3.45) would have one line in the standard

error output, indicating that the ratio 3.45 occurred 5 times, and 5 entries in

the standard output, one for each ratio error, detailing the specific nodes and

transistors involved.

2. Exampile

Continuing with the converter example of Chapter 4, a command of

stat converter.-sm > converter.sta

initiates the static analysis and stores the standard output in converter.stat.

Figure 5.6 is this file.

Evaluation of Figure 5.6 results in the following:

1) The unknown threshold drops are the input, clock, and
output nodes. This is expected since there are no input
or output pads.

2) The ratio messages indicating a pu/pd ratio of 0.00 are
associated with the input and output nodes and are also
expected due to the fact that no pads are present.

3) Since no pads are present, the Static Checker did not
identify any input or output nodes, so that all other nodes
are not affected by the input nor do they affect the output.
(Indicated by the Propagate print out.)

4) The only nodes not affected by either ground or power
are the input, clock and output nodes. This is desirable.

5) There is no indication of transistor (or other) errors, so
we assume that the circuit is statically correct.

69

i..,....

, _ ,.: . . . , ;, , '. , , , , ,. , ., ,, . ,, . _" . . ' , . "....... ._..V..-..

2136 bytes of 'free' storage used
Unknown threshold drop on node: 44 (80,58)
Unknown threshold drop on node: 45 (88,58)
Unknown threshold drop on node: 86 (24.32)
Unknown threshold drop on node: 88 (40,32)
Unknown threshold drop on node: 90 (56,32)
Unknown threshold drop on node: phil (15,6)
Unknown threshold drop on node: phi2 (76,60)
0.00 18 (50,36) <2x2>: <90?2x16> gnd
0.00 31 (34,36) <2x2>: <88?2x16> gnd
0.00 51 (18,36) <2x2>: <86?2x16> gnd
0.00 64 (83,26) <4x2>: <44?2x8> gnd
0.00 binary (84,16) <4x2>: <45?2x8> gnd
Propagate (10): 2 (78,85)
Propagate (10): 5 (86,85)
Propagate 10): 9 (7,77)
Propagate 10) 12 (16,85)
Propagate (10): 15 (32,85)
Propagate(10): 18 (56,85)
Propagate 10: 27 (7,69)
Propagate (0110): gray (40,4)
Propagate (10): 31 (40,85)
Propagate (10): 34 (48,85)
Propagate (10): 44 (80,58)
Propagate(10): 45 (8 ,56)
Propagate(10): 51 (24,85)
Propagate (10): 64 (?9,46)
Propagate (0110) 86 (24,32)
Propagate 0110 : 88 (40,32)
Propagate (10): 90 (56,32)
Propagate (10): binary (88,40)
Propagate (0110): reset (24,4)
Propagate (0110): phil (15,6)
Propagate (0110): phi2 (76,60)

Figure 5.8. CONVERTER.STAT

D. EVENT SIMULATOR

The Event Driven Switch Level Simulator (esim) can be invoked with

ezati f.in

Once invoked, esim performs as an interactive simulator with a prompt of

sim>

70

The manual page (ESIM in Appendix B) gives the allowed commands for complet-

ing a simulation.

1. 17ging REalm

Although it is possible to complete an entire simulation in the interactive

mode, the designer will find that the most effective procedure is to plan a

desired test sequence (a set of inputs and clock cycles to generate a known set
.,

, *.of outputs) and use vi to create a "macro" file to be read by esim. This macro

file should contain the initiating commands (as described in the manual page)

for the input nodes and the desired clock sequences. Additionally, it should

identify the nodes to be "watched." The file can be initiated either with

@ftle.fmwro

after esim has been invoked or can be included at the start of the simulation

with

Two-phase clocks can be defined with the Kcommand. For example,

K phil 110000 pbi2 000110

defines one cycle of a two-phase. non-overlapping clock. The input nodes can be

set to a "high" or "low" state using the h and I commands respectively or with

the V command. The outputs can be "watched" with the w or W commands.

2. Exampile

To simulate the conterter example, the macro file esui.macro must first

be generated. (See Figure 5.7.) The command

71

-:" ' : ..,, :,: . ,-._ o ,, ,--.

sim -eun'm.out converter.Usm esim.macro

invokes the desired simulation and stores the output in esim.out (Figure 5.3).

w gray binary
K phil 110000 phi2 000110
h reset
C
V reset 00001 gray 1110
RI

V reset 00001 gray 1001
R
V reset 000001 gray 11100
R
V reset 000001 gray 01011
R
V reset 000001 gray 11111
R
q

Figure 5.7. ESIMMACRO

23 transistors, 23 nodes (12 pulled up)
binary=0 gray=X
cycle took 32 events
>11 101:gray
>01011 :binary
>1001 1:gray
>011 10:binary
>11 1001:gray
>01011 1:binary
>010110:gray
>001101:binary
>11111 :gray
>010101:binary
23 transistors, 23 nodes (12 pulled up)

Figure 5.5. ESIM.OUT

Evaluating Figure 5.8, we see that the last (right) bit given for gray and

the first (left) bit given for binary are invalid and are only typed because of the

nature of the R command. There are five input gray codes used for the

72

• - " - - ' "4 , q **-."7" : " .' - ' . .\-_-' -.- . - ,*.* *"' ..- '

simulation with the respective equivalent binary code outputs. The MSB is to the

left of the printout. Comparison of each output with its input reveals that the

converter works as designed. For example, an input gray code of 1110 should

(and does) produce a binary output of 1011.

The last step in the design process is the combining of all valid symbols to

form the total chip. The CIF rile for the chip is formed with the cli -F command

to generate flnal.cif as described in Chapter 4. This file should be validated with

dre. stat. and esinm Once the total chip has completed all of the validation tests

to the satisfaction of the designer, it can be manufactured with a good chance of

success. Appendix D gives the procedures for DARPA supported chip

manufacture.

73

,-..

V1. pR.rITT, IA RTT VY VAST PTP.TT_ n CARRY I .003 41.WAI ADDIlFR

A. INTRODUCTION

This chapter discusses the development of an LSI design from conception

through simulation. The creation of a sixteen-bit adder is a two part research

project. First, the CAD tools and hardware resources available at the Naval Post-

graduate School needed to be exercised and documented. Secondly, recent

interest in the design of recursive (UIR) digital filters indicates a need for fast

adders that possess a predictable amount of delay. The adder designed and

fabricated in this thesis project has both of these attributes. Moderate

complexity, testability, and the possible utilization in a larger complex system

entered into the decision to create the 16 BIT'ADDER.

B. LOGIC DESIGN

1. Viplining

Nearly any digital circuit which accepts incoming data, processes the

information and produces an output may be suited to pipelining techniques. As

the title suggests,"pipelining" is incorporated into the design. Pipelining is a

technique whereby a larger more complex functional unit is serially decomposed

into several smaller less complex functional units. Each sub-functional unit

accepts a digital input, performs a "sub-process" and outputs the "sub- result"

to the following stage. The output of the final unit is the overall result. The term

"pipeline" suggests data entering a pipe at one end and the result spilling out at

the other end with processing taking place between the input and output. This

type of visualization omits a very important parameter - timing. A better way to
Bob

comprehend the pipeline operation is to visualize an assemblyline. The produv-

tion of a automobile is a good example. Inputs are all the necessary components

74

1 .• .:-,,,..,:..,..,.,....-...,.. .-: .,,-., ,... ,, ,.-.--..--..-... ., .-. ...- ,....... _. .,.-,..

and the output is the finished automobile. Along the assemblyline, certain func-

tions are performed at each work station and a finite amount of time is required

for each function to be completed. The system clock provides the control sig-

nals to the assemblyUne, At each tick of the clock, the yet unfinished auto moves

one additional station towards final completion. The fastest speed at which the

assemblyline may progress is determined by the work station that requires the

longest period of time to complete its task. If the line advances before a station

completes its function, the output product is rendered unuseable.

The basic advantage of pipelining is increased speed of operation. Two

disadvantages are complexity (additional hardware) and "fill" time. Continuing

with the above example, fill time (delay) is the amount of time it takes for the

first car to reach completion. The fill time is as large as, or larger than, the

amount of time that is required by one group of workers to complete the entire

automobile. Increased speed of operation is realized when the assemblyline is

broken down into numerous easy tasks. This is the key point in pipelining. While

it may take many ticks of the clock to obtain the first car, an additional auto is

completed for every subsequent tick of the clock. And, the period of the clock is

the time required to complete the short easy tasks. The complexity of such a

line is obvious when compared to the "one group-all tasks" approach.

When referring to a digital circuit, the increased complexity arises from

the necessity to store intermediate results between sub-units until the next

clock signal is received. Normally, the additional number of storage devices is

great and can quickly become as complex as the functional logic. The i time is

usually considered to be a disadvantage. However, this project originated as a

sub-functional unit of an infinite impulse response digital filter A precise

amount of delay is required for this type of circuit. In this case, the fill time is

considered to be an advantage. The highest clock rate can be realized when

"75

p.

there is only one gate delay per sub-unit. This maximum clock frequency

depends upon the amount of time needed for the data to progress from the

input storage device through a single level of functional gating and then stabilize

the output storage device.

Carry-look-ahead addition, which is discussed in the next sectionreadily

lends itself to pipelining techniques. The adder is divided into "N" sub-functional

stages . Two sixteen-bit vectors are applied to the inputs. "N" clock cycles later

the sum of the two vectors is obtained. If two new vectors are applied to the

input of the pipe at each clock pulse.then after the initial fill time of "N" clock

cycles, a resultant sum is output for each subsequent cycle. Many pipelined cir-

cuits use a two-phase non-overlapping clock. This allows for data to be clocked

into a sub-functional stage on one phase and the result to be clocked out of that

stage on the other phase. The limiting high clock rate is determined by the sub-

unit with the largest delay. The limiting low clock rate is determined by the

length of time the charge stored on any input/output dynamic register remains

above threshold. Recall from chapter two that this charge decreases exponen-

tially and is on the order of milliseconds.lt is possible to utilize flip-flops as the

input/output register to alleviate concern for the limiting low clock rate, hciw-

ever, this adds to the overall complexity of the design.

2. Carru-T.nrn-AhPAd Arlditinn

The standard one-bit full adder utilizes three inputs and produces two

outputs. It accepts the two binary bits to be added, denoted as A, and Bj, and a

carry input C I from the previous stage. The outputs are the sum bit Sj and

the carry output C. One set of boolean expressions that realizes a one-bit

adder is shown in equations (6.1 and 6.2). An n-bit full adder is constructed by

connecting (n) one-bit stages in parallel. Clearly, the amount of Lime for an n-biL

full adder to produce the output depends on (n). For the worst case analysis,

76

'S

.. " : ,- , , ..'. , , .',, , '. '. ,., ..", , . -.- . - -. ' , , -.-

Sj (A) XoR (Bj) XOR (Q1) (6.1)
XOR implies the eXclusive-OR logical operation.

•=A + AjBCf 1 +At Bj , + Q_ 1 +Apt C,_1 (6.2)
.

input vectors I and 6 could be such that if a carry were generated by the least

significant bits (A 0 and Bo),the carry would "ripple" through the remaining

stages. The output would not be valid until this carry propagated through and

affected all of the stages. As the size of the adder gets larger, this "ripple" effect

induces a larger time delay. In order to increase the operating speed of n-bit

adders whose length exceeds four bits, [REF.9:pg88] a technique known as

carry-ock-ahead additon is incorporated. Additional circuitry is added to pro-

duce two functions called "carry generate" and "carry propagate". The carry

generate function (Ge) is true when a carry is generated in the i th stage

regardless of the value of the carry into the ith stage. The carry propagate

function (Pi) is true when the ith stage would propagate (pa'-s) an incoming

carry to the next most significant stage. The logic equations for the two func-

tions are defined as:

G =,.B (63)

Pi=(A%) XOR (B) A + A (6.4)

When equation (6.4) is substituted into equation (6.:) the following is obtained:

Sj=((A) XOR (B ,)) XOR (C_ = (Pi,) XOR (C_1) (65)

Equation (6.2) can be simplified to:

4.-7

7717 7- 77 . .

CjA j+ (C%) ((At) XOR (Br)) (6.6a)

Substituting equation(6.3) and equation(8.4)into equation (6.6a), Ci becomes:

-. =Gi+ P -I (6.6b)

Note that all Pj and q- can be simultaneously determined from the input vec-

tors I and P. And, equation(6.5)implies that S can be produced in parallel pro-

vided all the carry inputs can be obtained simultaneously. This can be accom-

plished by solving equation(6.6b). Equation (6.6b) is a recursive equation and

with the carry input to the first stage being defined as C-. 1, a set of carry equa-

tions for all C. can be developed. The general solution is:

Cj=G + G-IP + G 2IP 1-A + ...GoPIP 2 .. .P + C-IPoPIP2 Pi (6.7)

To illustrate this formula,let i=4. Then, C4 the carcy bit needed to realize S 5

has the following logic equation:

C4=G4 + GsP 4 + GQPsP 4 +G'IP 2PaP 4 + GOP IP2P3P4 + C-IPOPP2P 3P4 (6.8)

S 5 is obtained by combining P 5 and C4 'n an XOR gate. Equation (6.7) is one

method of realizing a carry-look-ahead (CLA) "unit" An n-bit adder requires

equation(6.7) to be expanded to (=L-1). Two other units are necessary to

produce a carry-look-ahead "adder". The carry generate/propagate unit pro-

duces the G's and Pi's from the input vectors A and a. Both the G 's and Pi's

are then delivered to the input of the (CLA) unit which forms the carry bits.

These carry bits are combined with the Pi's in a third unit called the

78

.:<

"i',.e -, *'': .* * .. ' , ' . -i " ".".".". ."."..- -. > '..

"o S-.

summation unit to produce the Si's. This type of carry-look-ahead adder (even

though it has three main units) is called a one- level CLA adder. The distinguish-

ing difference between a one-level CIA adder and a two-level CLA adder is the

number of CLA units located between the carry generate/propagate unit and

summation unit.

'When (n)-the number of bits to be added-grows large, the problem of

fanout becomes critical. Note that in equation(6.8) for i =4,P 4 appears in five

product terms. For a sixteen-bit adder, the most significant bit is i = 15. To pro-

duce S15, P 1 5 and C14 are required at the input of an XOR gate. It is seen from

equation(6.7) that P 14 would occur in fifteen product terms to develop C 14 . This

, implies that the P14 output of the carry gen/prop unit experiences a fanout of

fifteen upon entering the CLA unit. A fanout of fifteen causes current limitations

to. be approached or exceeded in some large scale integration

technologies [REF.9:pg.88]. To circumvent this problem, a two-level carry- look-

ahead adder is utilized. An additional CLA unit is inserted between the gen/prop

unit and the summation unit. The addition of this extra CIA logic alleviates the

fanout problem but introduces extra gate delays and increases the overall com-

plexity of the adder. Modifications are made to this additional CLA unit to

develop what is called a "block" carry-look-ahead unit or (BCL-.). The BCLA unit

is very similar to the CLA described by equation(6 7). "Block" denotes a definite

bit length. Normally, (n) is equal to four or eight Instead of producing (for

n= 4) four carry bits,the BCLA unit develops the three least significant carry

bits along with two other signals denoted as "block carry propagate" and "block

carry generate". An example delineates the differences between the two types A

standard four-bit CLA unit produces C+ 3 , .(i+2, C.+,C ; i=0,4,8,12... while

a four-bit BCLA unit develops BPj ,BGj, C+, +-Cj+1 j0, 1,2,...,i =4j. BP

and BG signify block carry propagate and block carry generate The BP bit is

79

,' ,.,\% %' ,+. .+.'..' ° . ". - .. . , . " ., , " . " , •.. . .''.++ + . . , . .

valid if a carry into the block results in a carry out of the block. For l=4 BP

is determined by the following:

=Pi +P,A 2 P+,P ;j =0,1,2,3,... ; i=4j (6.9)

The BG~ variable is true if the carry out of a block was produced within that

block. BG can be written as:

,BG =q-3+ + Gj+2P++3 + 3 + qP+ 1 Pi+2Pi+3 (6.10)

j =0, 1,2,3,... ; i=4j

Using equation(6.6b) and the recursive solution method, the block carry bits can

be formed from the following equations.

BC 3=BG;- C-BP0 (6.-)

BC=BG BGoBP + C-BPoBP

BC11 =BG2 + BG1BP2 BGoBP1BP 2 + C_1 BPoBPiHP,,

BC,=BG3 - BG2 BP3 - BG1 BP2 BP3 + BG0 BP1BPBP3 - C-1BPcEP-rP 2 BP 3

Note that equation(6. 11) is a recursive formula on a block level where

equation(6.6b)is a recursive formula on a stage level. For a sixteen-bil

adderBC 15 is the carry out or overflow bit.

A sixteen-bit two-level carry-look-ahead adder constructed from commer-

-.- cially available four-bit CLA/BClA units is shown in Figure (6.1). Inspection of

* .i Figure 6.1 and the equations presented in this section yield the following gate

delay analysis. The propagate/generate u=t requires three leveL" Of gdAttng Jue

80

C'~i N

zo 0 q,

o 0D

In z to

*J.0

Fiue6 1Tolve 5bt L de

Kc>81

Li>
c

~',•
. -

to the XOR operation needed to realize the Pi's and the Gj's. Three levels of gat-

ing are also needed by the summation unit for the same reason. It produces Si

from the logical XOR of Pi and Q-1 . The block carry-look-ahead unit performs

two functions, each of which requires two gate delays. First, the BP 's and the

BG 's are developed in accordance with equations (6.9) and (6. 10). "After" the

BPj's and the BG.'s are formed the BC's are realized by eq(6.11). This forma-

tion of the BC's takes place in the standard CLA unit and therefore introduces

two gate delays. The BC's are then passed on to the next most significant BCLA

where another two gate delays are required to develop the remaining carry

terms. The two-level adder requires a total of twelve gate delays whereas the

one-level adder (due to the absence of the BCLA level) requires only eight gate

delays. The equation for the remaining carry terms is developed by using equa-

tion(6.7) with slight modifications and limiting the subscripts to certain allowed

values. Each BCLA produces only three carry bits. Redefining C-1 as BC_1 , the

carry bits for a sixteen -bit two-level CIA adder are determined by:

CO481=GJ,2+ BC.. 13,7 11 PO4 8 ,12 (6.12)

CI,, 9 ,1 3 - 1,5,9,13 + G, 4 ,8,1 2 P, 5 ,9 , 13, + BC .3,1 1P 0 .4 8 -12P ,5 ,1.

C2 ,6 ,10,14=G2,6,10,14 + G1,5,9,13 P 2 ,6 ,10,14 + GO,4,8,12P 1 ,5,q,13 P 2 ,6, 10 ,: +

BC- 1,3 ,7 , 1 PO, 4 ,8 , 12 P 1 ,5,9 , 13P 2 ,6, 1 0 .14

The carry bits formed by equations (6.11) and (6.12) are combined in the sum-

mation unit in accordance with equation(6.5) to produce the resultant vector

For a one-level adder,a fanout of fifteen was experienced by the PI 4 out-

put in developing 014. Equation(r3.12) showq that this fanout is reduced to thrr,

02

N7

for the two-level adder. The compromise is an increase in hardware complexity

and four additional. gate delays inherent in the two-level type.

Table(6.1) itemizes the order in which the intermediate results are

formed,the unit in which they are formed,the amount of gate delay, and the per-

tinent equation numbers.

This section developed the theory of carry-look-ahead addition. The infor-

mation and equations listed in Table(6. 1) and Figure(6. 1) provide the starting

point for the VLSI project described in this thesis. Pipelining, carry-look-ahead

additionand PLA structures are combined in the next section to develop an ini-

tial "paper and pencil" functional unit design of the thesis project.

Intermediate Unit gate Equation
Results delay #

Pi's CP/,' 3 (6.3) & (6.4)
Gi's

BPj's BCLA 2 (6.9)&(6.10)

BGj's

BC1's CLA 2 (6.11)

Ci's BCLA 2 (6.12)

Si's SLIM 3 (6.5)

Tab e(6.1)

3. leign rnnideratinn-g

This section develops the initial block diairam of the VLSI prcjeet. Recall

that CAD tools called "PLAGUE" and "PLGEN" exisi in the NPS VLSI design

83

inventory. They accept boolean equations as inputs and produce a CIF file as an

output. Restrictions applicable to these two software tools are:forty inputs,forty

outputs, and one hundred and fifty product terms. Capitalizing on the power and

convenience of these two CAD tools, all of the combinatorial logic needed to real-

ize a sixteen-bit adder is replaced by PLA structures. Since PLA structures are

used exclusively to develop the equations whose numbers are given in Table(6.1),

CLA addition is re-evaluated at a PLA level rather than a gate delay level. It is

conceivable that on one extreme an adder can be made from one "large" PLA

structure. The output .S could be tediously determined in terms of I and

This produces a "single" stage adder. An adder of this type would have an enor-

mous number of product terms. The huge fanout would probably render the

design physically unrealizable using present technology. On the other extreme,

the adder can be made from many smaller less complex PLA structures. Both

extremes appear to have only two levels of gating when using the NOR-NOR form

'.4 of PLA. This two levels of gating does not consider the fact that the complement

of the input variable as well as the variable itself must be delivered to the input

NOR plane. In order to supply the complement of the variable, an additional

inverter must be placed between the input variable and the input plane. Also, for

the NOR-NOR structure, an additional inverter must be utilized to invert each

output term. This translates to a minimum gate delay of four for the NOR-NOR

PIA structure. Four gate delays are experienced in a "complex" PLA as well as in

a "simple" PLA. This might first suggest that the fastest adder is the extreme

"single" stage model since both the complex and the simple versions have the

same number of gate delays. This is not correct. The "number" of gate delays is

equal but the "delay" in each level is a strong function of fanout. An input line

(variable) is capable of charging one inverter gate above threshold in much less

time than it takes to chargefor example, ten inverter gates above threshold.

-14'

.o 1

. . '. ...

This analogy applies to the one and two - level carry-look-ahead adders. Recall

that a one-level adder has a total gate delay of eight while the two-level adder

has a total of twelve. The maximum fanout for the one-level sixteen-bit adder

was shown to be fifteen while the maximum fanout for the two-level adder (using

four-bit BCLA units) was three.Therefore, it is possible for the two-level adder

with the higher multiplicative gate delay factor to have a shorter overall add

time. Clearly, the successful CLA - pipelined design requires a balance between

the number of stages, the fanout in each stage, and the overall complexity of the

design.

d The first "attempt" at the design originated as a transformation of

Table(S.1) into a pipelined adder. The table suggests five distinct stages. The

first stage realized equations(6.3) and(6.4) in PLA form. The second PLA realized

equations(6.9) and (6.10). PLA three implemented equation(6.1.1). Stage four

developed equation(6.12). Finally, the last stage produced the final result by

realizing equation(6.5). D type flip-flop circuits provided the iPtersta.e storage

devices and were controlled by a two-phase non-overlapping clock. The "unused"

variables were simply passed from input latch to output latch in synchronization

with the data flow. [REF.l:chap.7] provides an excellent discussion on system

timing in LSI circuits. Since no particular constraints were placed on the project

other than those induced by the PLA CAD tools, an artificial one was created The

five-stage design was obvious from Table(6. 1). The "requirement" for a four-stage

adder was introduced to investigate the interaction between the number of

stages,fanout,delay,and complexity. A re-design reduced the number of stages

from five to four. This reduction was accomplished by recognizing that the

block propagate and the block generate functions(equation s 6 9 and 6.10) could

be determined in terms of A- and At and be included in the first PLA withouL

exceeding the input,output, product term constraints. Complexity decreased but

B5

the fanout in PLA #1 increased. An increase in fanout results in a decrease in

operating speed. The tradeoff between complexity, speed,and fill time was con-

sidered acceptable for an initial VLSI design project. The exact equations and

the input/output variables for each PLA are given in Appendix(E). This appendix

contains the input files to the "PLAGUE" software tool. A (') symbol signifies a

logical NOT.the (&) symbol signifies the logical AND and the (+) symbol is used

for the logical OR. Two final simplifications were made to the design. First,not all

of the variables are utilized in each PLA. The initial design passed these vari-

ables from input latch to output latch in synchronization with the data flow. It

was determined through a comparison between allowable chip size and

estimated PLA structure size that surface area on the chip was not a critical fac-

tor. As a result the "un-needed" variables in a particular stage were incor-
porated directly into the PLA structure. This was accomplished by defining the

output variable as the input variable in the "PLAGUE" input file. This alleviated

the need fcr "stray" latches and interconnecting wiring. PTA CAD tools automati-

cally provided the extra circuitry. The second simplification was the replace-

ment of the D type flip-flop latches by dynamic registers as described in

[REF.1':p8]. This allowed the variables and their complements to be delivered

to the input plane and the output from the output plane to undergo the neces-

sary inversion. Figure (6.2) shows a block diagram of the VL_,SI design project.

As described in the following section, the next step in the design process is

to verify that the logic of the design is functionally correct. This is done by emu-

lating the design using the ILOGS software tool.

C. DESIGN VERIFICATION

ILOGS is an acronym for I nLeractive LOG ic S imulator. This program utilizes

models of the operating characteristics of metallic oxide semiconductor large

i 88

000 0 0 0 0O'O

0 00 00 0

(0 I C~jg

0 00 0 00

S0 0 0 0 0

re) r(2 Bloc du ara

o

87

0 44 0 0 .

~~~%**~~~~~ :D>' . '. . - .



scale integrated circuits. Random access memories, read only

memoriesprogrammable logic arrays as well as conventional gates including

invertersANDNAND,OR. NOR,XOR,etc. can be simulated using the ILOGS pro-

gram. Clock specifications, input/output methods, power, and ground connec-

tions are also provided. The turn-on and turn-off delay times of the individual

gates as well as the access time for the memory devices can also be assigned in

order to more closely realize the real world design. Indigenous to most digital

logic circuits is a large number of identical logic structures. ILOGS contains a

macro "definition" feature so that these identical structures need only be

defined once on a primitive level. Subsequent usage of the structure can be

accomplished by "expanding" the macro definition. New node names are

assigned in the expansion statement. The result is a replication of the initial

definition. From the above discussion, it should be obvious that ILOGS is a very

complex and powerful software tool.

It is conceivable that a small computer could be emulated by the ILOGS pro-

gram. Because of the complexity of ILOGS, it is beyond the scope of this thesis to

provide an in-depth discussion on all of the data structures and terminal com-

mands found in ILOGS. Rather, only the necessary information concerning the

verification of the VLSI project is provided. The ILOGS USER'S MANUAL version

2H [REF. 10] should be referred to by first time users of ILOGS.

All of the software tools discussed up to this point are processed on the VAX

11-780 computer under the UNIX operating system. ILOGS is run under the VMS

operating system. NPS possesses two VAX 11-780 computers. One uses the UNIX

operating system and one uses VMS. Fortunately, the VAX computer which util-

izes the VMS operating system is also capable of emulating the UNTX operating

system and the "vi" editor. Therefore, it is not necessary to learn an additional

operating system and editor to use the ILOGS program. Although it is culturally

8

I. - .. °- . .- -°



enriching to become familiar with two different editors and operating systems, it

is recommended for a person who is familiar with neither VAX system to learn

and use the UNTX/vi"editor on both computers. Appendix(A) describes the

*VAX/UNIX system. By learning one system wellthe overall proficiency of the

designer is increased. The necessary information to use UNIX on the VMS VAX

computer is given in the login sequence.

There are two types of information which ILOGS processes. They are data

information and terminal commands. Data information can be subdivided into

three main categories. They are: i.clock/table data, 2.network data, and 3.out-

put specifications. The clock data is used to define highly repetitive timing infor-

mation as well as constants such as VDD and GRD. The table data provides a

means to generate inputs to the design if needed. Network data is the "heart" of

the digital circuit. This data describes the topology and characteristics of the

circuit to be simulated. Included are basic gatesROM's R-A.M's, PLA's.macro

definitions,macro expansions and connections through the use of identical node

names. Two nodes at different points in a circuit are considered to be connected

it they have the same names. Output specifications designate the nodes that the

user desires to analyze. Simulation of a circuit begins with the creation of a file

This file contains all the necessary data information to simulate the design. Once

this Mle is completed, terminal commands are used to perform the desired

operations on the data file. Several of the more frequently used terminal com-

mands are explained later in this chapter.

The translation of Figure (6.2) into a data file is described in the following

discussion. The actual data file for the sixteen-bit adder required 953 lines of

code. Only parts of this data file are included in this thesis since the structure of

the design is highly repetitive. The only difference between stages is the size and

function of the PLA's.The input/output registers are identical in structure but

89

p.0'



:-. - . . . . . . . .

differ in length. A good understanding of the operation of ILOGS can be obtained

by analyzing the three main groups of data information as they appear in the

adder file. Figure(6.3) lists lines (7-25) of the data information fle for the

sixteen-bit adder. This section of the file describes the clock operations and

input vectors utilized by the circuit. Comment statements are denoted by a "S"

sign. On any line, all characters to the right of a "S" are considered to be com-

ments and are disregarded by ILOGS. Lines(9 and 10) describe VDD and GROUND.

A clock statement begins with a "name" and is followed by ".CLKI' to denote that

the node "name" is a clock and that "time-state" pairs follow. Line(9) is inter-

preted as : a node named VDD is a clock and at time zero VDD is "driven" to a

logic "1" (Dl) and remains high indefinitely. This is simply a method of providing

7 $ define clocks
8 $
9 VDD .CLK 0 D1
10 GRD .CLK 0 DO
11 PHIl .CLK 0 D 20 DO 50 D1 70 DO I00 D1 120 DO 150 D1 170 DO 200 D1 220
12 + DO 250 Dl 270 DO 300 Dl 320 DO
13 PH12 .CLK 0 DO 25 Dl 45 DO 75 Dl 95 DO 125 D1 145 DO 175 Dl 195 DO 225
14 + D1 245 DO 275 Dl 295 DO 325 Dl 345 DO
15 $
16 $ define inputs
17 $
18 .TABLE IA15 IA14 IA13 IA12 IAll IL10 1A9 IA8 IA7 IA6 lAS IA4 IA3 1A2 IAI LAO
19 + IBIS 1814 IB13 1812 Il IS0 1B9 IB8 IB7 136 IB5 184 IB3 132 IBS IB0 IC-I
20 0 0110101010011100 11100101C1100011 1
21 35 1111111000111000 0101110100000100 0
22 85 1000101000000100 0110101111100000 0
23 135 0100111111010100 0010101010101010 0
24 .ECT
25 $

FIgure (6.3) Clock and vector information

the necessary power connection to the circuit. Lines(i1-14) describe the two-

phase non-overlapping clock. The node named PHIl is driven to "1" at time zero

and remains at "I" until time 20. At time 20 PH1I is driven to "0" (DO) and

9

90



remains there until time 50 etc.etc. PHI2 is described in a similar manner. When

longer repetitive clock sequences are needed, a "repeat" feature is utilized.This

allows the clock to run indefinitely. Input data is shown in lines(18-24). The

".TABLE" on line (i) and ".EOT" (end of table) on line (24) delineate the extent

of the table. The input variables starting with "IA15" and ending with "IC-I" (a

"+" indicates a continuation of the previous line) assume the values of the

binary digits listed on line(20) from time 0 to time 35-, on line(21) from time

35 to time 85- etc. For example, at time 135, 1A15=0. 1A14=1, A13=0,...IB l,

IBO=0 and IC-1-0.

Figure (6.4) lists lines (27-37). A macro definition is described by lines (28-

33). A macro whose name is PLAT begins on line (28) and has four external nodes

called (IN.PHIlOUT,OUT-). Lines (29-32) define the circuitry of PLAT. This cir-

cuit uses three NMOS inverter gates denoted by the gate type designator

(.INV/N). The name of the output node of any conventional gate is the name of

27 $
28 .MACRO PLAT IN PHI1 OUT OUT-
29 OUT. IN ,/N A2
30 A2 .INV/N Al
31 OUT-. INVAI Al
32 Al IN SWOR PHI1
33 .EQM PLAT
34 *1AT0 PLAT IAO PHI1 AO AO-
35 *LATi PLAT IAI PHIl Al Al"-
36 *LAT2 PLAT IA2 PHIl A2 A2-
37 *LAT3 PLAT IA3 PHI1 A3 A3-

Figure (6.4) Macro definition and expansion

that gate and is always listed first. In this case, (OUT.A2,OUT-) are the three

inverter gates. Inputs to conventional gates are listed after the gate type desig-

nator and are (A2,A1,and Al). Line (32) describes a "switchable-wired-

91



OR"(.SWOR) circuit. ILOGS version 2H does not support MOS "pass" transistors.

Therefore, the NMOS pass transistors in the input/output registers had to be

modeled as a switchable-wired-OR. Both possess nearly the same characteris-

tics. For the NMOS pass transistor a positive voltage above threshold on the gate

effectively shorts the source and drain terminals. When the voltage on the gate

is below threshold, the short is replaced by a very high impedance. The (.SWOR)

circuit operates in the same manner. In line(32), the node names listed before

(.SWOR) become connected when the enable signal-the node name following

(.SWOR)-becomes "high" and disconnected when the enable signal becomes

"low". In this case, nodes (Al) and (IN) are connected when PHII is "high" and

disconnected when PHIl is "low". The function of PLAT is to deliver a single var-

able and it's complement to the input of the PLA. The (.SWOR) allows the charge

to be "trapped" by disconnecting (Al) and (IN). Figure (6.5) shows a schematic

diagram of this macro definition. Lines(34-37) of Figure(6.4) show four macro

PHIl

.:OUT

INI

I ,SWOR
I-----------------------

Figure (6.5) Circuit diagram of macro PLAT

expansions of the macro definition named PLAT. Thirty-three macro expansions

of PIAT are needed to realize the dynamic input register that provides inputs to

the first stage PLA. For example,in line (36), *LAT2 assigns a new name to the

92
_ - - .



macro PIAT. It is now known to ILOGS as LAT2 with external

connections(IA2,PHI1,A2,A2-). These newly defined external connections must be

in the same order as (IN,PHI1,OUT,OUT-). The replacement name (IN) now

becomes (IA2), PHIl remains unchanged.(A2) becomes (OUT), and (A2-) replaces

(OUT-). The replacement names must match the order of specification for the

macro definition. Line (36) of Figure(6.4) realizes the following circuit shown in

Figure (6.6). A comparison between Figures (6.6) and (6.5) shows the relation

between a macro definition and a macro expansion. This is a valid expansion

even though (A2) appears on both the input and output of the same inverter cir-

cuit in Figure (6.6). ILOGS separates node names used inside a macro definition

from those referenced outside of a macro definition. To realize this single input

circuit, only one line of code was needed instead of four. There are one-hundred

PHI I

I A2

I 

S

II I SWORI

Figure (6.6) An expansion of the macro PLAT

thirty-five PLA input circuits needed to realize the four-stage adder. Four-

hundred and five lines of code were saved by using the macro expansion feature

of ILOGS. A similar procedure was used for the PLA output circuitry A single

macro named "STAGEOUT" was defined. An additional one hundred twenty one

93

. --



. expansions of STAGEOUT were utilized. The power of the macro feature in ILOGS

network data is obvious.

Lines (855-872) are shown in Figure (6.7). Line (855) determines the begin-

ning of stage four PLA and ".EOP"(not shown)signiftes the end. The input plane

and the output plane both implement the NOR function. This is shown by

(.NOR/N .NOR/N) on line (855). The input variables are listed starting with

"CARRY-i" in line (856).The complement of a variable is denoted by a trailing(-)

variable string from the output variable string. Output variables begin on

line(863) with "SUM0" and end with "SUM 15" followed by a slash.A one-to-one

855 *PLA .NOR/N .NOR/N
856 + CARRY-I CARRY -1 CARRYO CARRYO- CARRYI CARRY-- CARRY2 CARRY2-
857 + CARRY3 CARRY3- CARRY4 CARRY4 CARRY5 CARRY5-- CARRY6 CARRY6-
858 + CARRY7 CARRY7- CARRY8 CARRY8-- CARRY9 CARRY9- CARRY10 CARRYI01-
859 + CARRY11 CARRY11- CARRY12 CARRY12- CARRY13 CARRY13- CARRY14 CARRY14-
860 + PFOO PFOO- PF1O PF10-- PF20 PF20- PF30 PF30- PF40 PF40-- PF50 PF50-
861 + PF60 PF60- PF70 PF70- PF8O PF80-- PF90 PF90- PFI00 PFI00- PFIIO PFIi0"
862 + PF120 PF120- PF130 PF130- PF140 PFI40-, PF150 PF150-/
863 + SUM40 SLIM1 SI4b2 SLU3 SLI44 SLM5 SU46 SU17 SUIM8 SU1M9 SLY 10 SLY411 SLM12
864 + SLJM13 SL I14 SII 15/
865 +U1 X ................................ X ..............................
866 + X ...............
867 .4J2 X .............................. X.........................
868 + X ...............
869 43 .. X ............................... X......................
870 + .X ..............
871 +U4 ...X ............................. X............................
872 + .X .............

Figure (6.7) Partial description of stage four PLA

positional linear relationship holds between the location of the input/output

variables in the list and the following array connection terms. An (X) represents

a connection and a (.) represents no connection. Consider lines(865 and 886)

Line(866) is a continuation of line(865). The sixty-four input variables

correspond (one-to-one) with the sixty-four possible connections on line(865)

94



Similarly, the sixteen output variables correspond to the sixteen possible con-

nections on line(866). For example, the first (X) in line(865) corresponds to the

first input variable CARRY-i. The second (X) in the same line(position thirty-

four) corresponds to PFO0 Both of these input variable are related to SUMO

since the (X) connection appears in position one of line(866). In the same

.i manner, lines(867 and 868) relate the variables CARRY-I and PFO0 to

SUM0. The !LOGS NOR-NOR PLA realization translates lines(865 through 868) to

the following:

SUMo= UT +-

SUMO=(CARRY-1) + ( + (CARRY-i) + (PFO0)

The application of DeMorgan's theorem allows SUMO to be written as:

S'UMO=(CARRY-i)(PFOO) + (CARRY-1)-P-)

The SUM0 variable is inverted by the expansion of the macro ST\GEOUT This

operation produces the NOT of SUMO and is denote. FS0 FSO (final sUM 0) then

has the following equation.

FSO=(CARRY-1 (PFO0) + (CARRY-l )(PFOO

This is the required XOR logical function needed to produce the

(see equation 6.5). PLA structures and the associated ,".,

provide all of the network data to realize the -r',ie ,

code.

9,5

i'1 '11 11 1/ 1 1"1 1 1 1AI ' '



D-R136 356 VLSI (VERY LARGE SCALE INTEGRATED) DESIGN OF A :16 BIT 2/3
VERY FAST PIPELINED CARRY LOOK AHEAD ADDER(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA J R CONRADI ET AL.

UNCLASSIFIED SEP 83 F/G 9/5 NLmEEEEEEEEEliE
IEEEI.I JEE....
smEEmhhhEEEEE
smEEmhEmhhEmh
EhEEEmhohhEEEE
mohEEEEohEuhImhhE||hhhEEE

|||l||||lon||l~~l~l|on



S6..

ma-m

111.25 1 1.4 1. 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

S.-.



The (.OUTPUT) specification is a means to observe the operation of the cir-

cuit. Lines (948-953) shown in Figure (6.8) provide a concrete example. Node

names following (.OUT) are the nodes of interest to the designer. States of each

node listed are included in the output table. In this case, the two-phase non-

overlapping clock and the sixteen sum bits are the nodes of interest. Terminal

commands can display or store the output table in various forms.

Although only portions of the sixteen-bit adder file in ILOGS readable code

are shown, enough information has been supplied to understand the transforma-

tion of the adder from block diagram form (Figure 6.2) to design verification

form.

948 $ output the sums
949 $
950 $
951 .OLr PHI1;;PHI2;;FS15;FS14; FS13; FS12;FS11; FS10;FS9;FSS; FS7; FS6; FS5;
952 + FS4;1$3;FS2;FS1;S0
953 END

Figure (6.8) Output specifications

Many terminal commands exist in ILOGS. Only those necessary to verify the

proper operation of the adder are discussed in this thesis. Once the design file

has been created and is residing on bulk storage(disk), a command to invoke

ILOGS is issued. Under the VMS operating system "RUN ILOGS" accomplishes this

task. The cue "ENTER COMMAND" is returned. Retrieval of the design file from

disk is the next step. 'INPUT [FILENAME]" reads the file from the disk. "SIMJ-

IATE FROM tl TO tZ' invokes ILOGS to simulate the design from time (1) to time

(2). The starting and stopping times should be consistent with the clock

specifications. Simulation time frames can be less than but not greater than the

clock duration. When simulation is completed,the command "(PRINT. TYPEor

96



STORE) OUTPUT FROM tli TO t2 ON CHANGE"' causes ILOGS to print on the

llneprinter.type on the terminal screen, or store on disk the states in tabular

form of all the nodes listed in the (.OUTPUT) specifications each time any node

listed in the output specifications changes state. Many more commands exist

and there are many options, however, the above commands provide the basic

repertoire needed to verify the design. When the simulation is completed and

results recorded. "EXIT" will return control to the VMS operating system.

Figure (6.9) is the ILOGS output that verified the adder design. Note that an

output is not obtained until the fourth time PHI2 is asserted "high". Also, a

different correct sum is displayed for each subsequent assertion of PHI2. The

four resultant sums are derived from the input vectors listed in the TABLE

specifications (lines 18-24).

With the design verified for proper operationthe next step in the VLSI design

procedure is to begin a "bottom-up" layout of the project utilizing the chip lay-

out language (CLL).

D. LAYOUT

Chapter four gives an in-depth description of the CLL CAD tool. The building

block approachPLA generationand the chip layout language are utilized in this

section to produce the VLSI design. Each step of the layout is discu:'ed with

reference to the file or program that was written to realize the final chip. For

clarlty,all of the files or programs are listed in order of reference in

Appendlx(E).

The Stanford University cell library is used exclusively in this design. Four

1 major "cells" were required that were not in the cell library. AR a result, the

missing cells were created and added to the list of useable "puzzle" pieces. The

first step in this design was the creation of the four PLA structures. PLA's one

97

C- . S', : ' * :- , '',,
-

,",.:0 . ...'.'; .. ';. . o* . -.. ..-. .* " . .. . . - . .. . .



*VLSI I

P P FFFFFFFFFFFFFFFF
H H SSSSSSSSSSSSSSSS
I I 1111119876543210
1 2 543210

TME
010 ****************

20 0 0 ****************
25 0 1 ****************
45 00 ****************
510 ****************
70 0 0 ****************
75 0 1 ****************

100 0 ****************

120 00 ****************
12501 ****************
145 00 ****************
150 1 0 ****************
170 00 ****************
175 0 1 0101000000000000
195 0 0 0 1 01 0000 0000 0 0 00
200 1 0 01 0100000000 00 00
220 0 0 0101000000000000
225 0 1 0101101100111100
245 0 0 0101101100111100
250 1 0 0101101100111100
270 0 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0
275 0 1 1111010111100100
295 0 0 1111010111100100
300 1 0 1111010111100100
320 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0
325 0 1 0111 1 01001111110
345 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0

Figure (6.9) ILOGS design verification

98

-.--- ~~ V.V ~ -:---;N-



."WNa 4 -Z W.U..N . - k 773-7 V; 73.. -. - N nx T. . ; , 1 i, . . . ,. , & I. I- T._N 1 7.. 7

through four listed in Appendix(E) describe the input files that were submitted

to the CAD tool "PLAGUE". File "plal"(CIF#950) lists the boolean equations that

realize the Pv's,q's, BP's,and BGj's in terms of the A's and Bj's. File

"pla'(CMFI951) forms the BC's. File "plaW" (CIFI 952) develops the Q's and file

"pla4"(C1F1953) produces the Sj's. There are several options available that can

effect the output of the PLAGEN program. The PLAGUE-PLAGEN tools were ini-

tially used without any options to obtain the size of the individual structures.

Using the sizes of the PLAs and of the selected input/output circuitry, a floor

plan was createdFlgure(6.10).that accommodated the chip size limitations of

6890 X 6300 Am Standard cells for PLA input /output circuitry were selected

from the Stanford cell library. PlaClockIn and Afterburner were used for the

input and PlaClockOut was used for the output. The input and output circuits

have the capability of either being attached to the bottom or top of the

appropriate plane. It is possible to erroneously transpose the input variables

and their complements. The PlaClockln/Afterburner combination accepts a vari-

able from the bottom (arbitrary reference) and, after inversion and buffering.

outputs the variable on the right top and the complement of the variable on the

left top for insertion into the PLA plane. If this cell combination is rotated

180 ,(input from the top) then the variables are switched. Care must be exer-

cised when attaching the input circuitry to the PIA plane. The "-c" option of

PIAGEN automatically complements the connections within the PLA plane. Since

the output plane only has one line per output variable, this does not apply to the

output circuitry. HoweverPLAGEN automatically provides PlaPullup pairs on

the top of the output PLA plane. If layout constraints require that the output of a

PLA must be taken from the top,then the "-o" option must be used. This option

prevents the occurrence of the PlaPullups on the output plane. PlaPullups

deleted by the "-o' option must be replaced at the opposite end of the output

99

. . . . .... ,.,................ .,.-..........................



0~ 0 0 0 0

OUT

P LA 4 0

C PLA 1 I 0

OUT 0
o PLA 3

0
o~ IN

0 I lOUT

N ou 0So _P/LA>,2
N "A C.., B

00 0 0 0 0 0C

Figure (6. 10) Floor plan

too

~ * a . * . .- * .



PLA plans for proper operation. The following four commands were executed to

develop the PLA structure consistent with the floor plan. The results of these

four commands are the addition of four new cells that can be utilized as any

other cells in the cell library.

plague <plal plagen-c > plal.cif
plague <pla2 plagen -o > pla2.cif
plague <pla3 plagen -c -o > pla3.cif
plague <pla4 plagen -o > pla4.cif

PLA GENERATION COMMANDS

The next step in the design process is to attach the necessary input/output

circuitry and replace any PlaPulups that may have been deleted by the "-o"

option.Program "stagel.clr" in Appendix(E) provides a concrete example of how

this task is accomplished. This program attaches the cells PlaClockln, After-

burner, and PlaClockOut to the PLA structure #1. Lines (2 and 4) of "stage 1.61"

allow for the cell library and the newly created PLA#1 to be used by this pro-

gram. The portion of the program between the brackets can be translated as fol-

lows. Lne(8) "gets" plal and places the lower left corner of its bounding box at

x-0,y-123. Line(10) "gets" Afterburner and places the lower left corner of its

bounding box at x=16,y=58. Then line(9) causes this cell to be repeated 33

times in the x direction with only one occurrence in the y direction. Remaining

lines are interpreted in the same manner with different cells and starting

ponts.lf any transformations were ilsted,they would have been executed before

bounding box placement and repetition took place. Various starting points are

determined by measuring the center coordinates of the input/output lines of

the cells to be attached. The coordinate for the lower left corner of the bounding

101

-- -_---.-- ---..



box can then be determined. When PlaClockIn has its lower left corner located at

X-15 y=O as shown in ine(12) of "stagel.cl",the two output lines abut precisely

to the two input lines of Afterburner provided that Afterburner has its' lower left

corner at X16.y=5B.. When the program is executed, another cell is formed. It

consists of the PLA structure with all of the input/output circuitry attached.The
lower left corner of the bounding box has its coordinates at x=0 y=O. Three addi-

tional PLA stages are created in the same manner.

With the four main stages completed, the next step is to layout the input/

output bonding pads.This is accomplished in program "stage5.cU".The number of

bonding pads was determined to be fifty-three. This included thirty-two inputs

for I and P, one input for BC., sixteen outputs for S. two inputs for PHIR and

PHI2, and two for VDD and GROUND.To alleviate excessive wire run length and

"cross-over" complexities, the input pads were distributed as close as possible

to the input area of stage one. Similarly, the output pads were placed as close as

possible to the output of stage four.The execution of this program produced a
"cell" of dimension 2500 X by 2700 A. Fifty-three bonding pads are located

around the outer edge with a large void in the middle.

A final program is needed to complete the design. It must combine the five

stages into one then provide the Interconnecting wiring. This program is called

"tot.cr'. Stage five has the lower left corner of its bounding box located at x=0

y=0. The remaining stages are strategically placed within stage five to allow

enough room for wire runs between stages and bonding pads. The x-y coordi-

nates for stages 1-4 can be seen in lines 11-14 of program "tot.cl". Interconnect-

ig wiring to complete the chip is provided by the "wire" statements in the

remaining lines of "tot.cll".The names of the designers were added in the polysil-

icon level by "including" the program "designer.cl" in "tot.cll". Execution of

4.l "tot, clI' produced a CI' file that contained all of the necessary elementary

102

M. . . , , . , ,., . , . .1-.



rectangles on the proper levels to realize the adder. This design was subjected

to two remaining tests before submitting it for fabrication.A design rule check

and a logic simulation are the next steps in the design process.

E. DRC

A "tot.sco" file was created from the "tot.cll" program. The DRC uses this file

to search for design rule violations. The check took several hours to complete. It

returned a file with seven errors. These were quickly found by using a plot of the

chip and the coordinates listed in the error file. Corrections were made to the

wire list and the chip was again submitted to the DRC. The second run was com-

pleted error free.

F. SI ULATION

The circuit extractor provides a means to identify various nodes in the design

by number. Nodes of interest (input pads, output padsVDD,and GROUND) are

each assigned a label in order for the chip to be simulated. For example, locate

line(32) of file 'flnal.sym" in Appendix(E). The output plot derived from the

extractor has numbers associated with many nodes. In this case,#1 1301 defines

the input bonding pad that the designer called A13. The "final.sym" file is

created to prescribe this labeling for all nodes of interest. The labels are then

used by the event driven simulator (esim). Chapter four, section D, describes

the mechanics of the event driven simulator.The file "sim.in" in Appendix(E)

prescribes the clock(). the labeled nodes of interest to '"watch"(W).and the

high(h) and low(l) input nodes. As a result of the circuit simulation,the file

"simout" was produced. The values for the inputs and outputs are listed for

each cycle. As expected,the first three cycles produced no outpuL(OUT=XXX...X)

but on the fourth cycle the correct sum was obtained. Decimal output on

103



li.o(26)~ <35294> is the sum at line(12) CIN=1. line(14) B=232?Oand line(iS)

A=12023. Thes values occured as inputs three cycles earlier in the sequence.

Several simulations were completed using various values for the input vectors.

M cases produced the correct output. Since the design was made entirely from

the call library or computer generated cells a static check was not needed.

The design passed ILOGS verification~a design rule check, and an event driven

simulation. It was then considered ready for fabrication.

104



VII TVqnNn

A. EXPECATIONS

Thl design was intended to add two sixteen-bit vectors and a carry-input bit

to produce the sixteen-bit sum of the inputs without a carry-output

bit(overflow). To produce the carry-out bit, it would be necessary to implement

additional block propagate and block generate functions. This cannot be accom-

plished by a minor modification of the existing design because the input and

product term limitations for PLA# 1 are exceeded.The absence of the overflow

bit is not considered to be a significant degradation. Since the adder obtains its

inputs from a analog-to-digital converter,the analog voltage input could be prop-

eriy limited and scaled to prevent bit weights that would cause an overflow. The

lack of an overflow or carry- out bit would,however, prevent the combination of

two sixteen-bit adders into one thirty-two-bit adder.

The design was also intended to generate the sums at a very fast rate. It was

discussed in chapters two and six that the fastest clock rate at which the adder

will operate depends on the slowest stage. The slowest stage is that with the larg-

est fanout. PIAI 1 determines the clock rate for this design.Mead and Conway

[REF. 1:sections. 1.3.1.5,1.13] provide some insight into the very complex topic of

system timing analysis. To perform more than a worst case timina

anaysis,requLres an in-depth discussion of device physics and electrical parame-

ters which is beyond the scope of this thesis. An estimate of the operating speed

was obtained by using the guidelines cited in the aforementioned sections of

[REF.1]. Show in Ftgure(7. 1) is an abstract representation of the "worst" case

condi 3ns for 4ge one of the adder. A maximum fanout of eighteen exists in

the inp -. PLA plant and a maximum fanout of two exists in the output PLA

plane. When a series of inverters Is cascaded as in Figure(7.1), and a change of

105

S. ~t.!. * %. ~ *4~21



input voltage occurs,the charge from "high" nodes is removed through

switched-on pull-down transistors. Additionally, the "low" nodes are charged

- -

*~,

NI
I.

.1I I

I I I

PLACLOCKIN AFTER- INPUT OUTPUT
BURNER PLANE PLANE'

STAGE 1

Figure(?. 1) "Worst" case abstraction of Stage one

by the previous pull-up transistors. The amouint of Lime for a pull-down transis-

tor to "sink" charge is less than that for a pull-up transistor to supply charge.

106



Let the time required for a pull-down transistor to remove charge from a node

equal (T). Thenthe time for a pull-up transistor to supply charge to a single

follow-on gate is (kr) where (kc) is equal to the ratio:

k P" (7.1)

Here (Z) is equal to the length(L) to width(W) ratio of the gate region and "pu"

denotes pull-up and "pd" denotes pull-down. When fanout occurs, the time to

sink charge from (f) nodes becomes (f r) whereas, the time to supply charge

to (f) nodes becomes (kf T). Since it requires more time for a node to be

charged, the worst case occurs when the "Afterburner" cell is tasked with charg-

ing up the inputs to all eighteen inverters. This occurs when a logic "0"(0 volts)

input follows a logic "i"(5 volts) input. Assume a logic "I" has been clocked in on

(pl and has stabilized all the nodes from node one(Nl) to node six(N6) in Fig-

ure(7.1). The graphical analysis shown in Figure(7.2) assumes that the After-

burner cell is a simple inverter with (k =8). The total time for the logic "0"

input to stabilize N6 is:

t = mn T"+k+Tf IkT+f 2 T (7.2a)

In this case

k=8 ; f=18 ; f 2=2

So

tmin = T+8T+T'+ 144 +2T (7.2b)

Since the Afterburner cell is a superbuffer and has approximately four times the

current sourcing capability of a standard inverter, the fourth term in

107



277Z-.-.-. *. -~~

't4 I I I

I

• :."NODE4

1*II I I II1

.OEm I II I
I

- I

T TI

I I
II

Figure(?.2) Graphical timing analysis for the "worst" case.

108

*
4

-C
5

-i , *." " ..- . .. . . .- C.. 5 . , . - C-.



*: ---- -:": ' ' '- - ; - -" : ° .' - n r .- , L' . " - U-'' " -: : ' "- " . " " : "
7. -.W -.7. 71.

equation(7.2b) can be reduced by a factor of four. This gives:

tmn = 48r (7.3)

The value of (T) is approximately equal to six-tenths of a nanosecond. Tau is

obtained from the fabricator's specification sheet received with each set of

chips. The value of t min is equal to the total time for a single clock phase (V01)

if stray capacitance is ignored. Normally, stray capacitance is at least as great

as the capacitance found in the gate circuitry. Therefore, a conservative

approach is to double (t.a). Thus:

t min = 60 nanoseconds (7.4)

Since tmin is the total time for one clock phase of a two-phase non-overlapping

symmetrical clock schemethis value must again be doubled. Also, a finite

amount of time must be allotted for the non-overlapping portion of the clock.

This adds approximately another five nanoseconds. Finally:

tmin % 125 nanoseconds (7.5a)

and

freq mx A 8 megahertz (7.5b)

Equation(7.5) shows the expected values for the adder when a two-phase non-

overlapping symmetrical clock is used. By using a two-phase non overlapping

asymmetrical clock, freqmax can be increased. Phase one (9o1) of the clock

must be long enough to allow PLA# 1 to function properly.but phase two (r02)

may be shortened considerably since there is only one inverter stage between

the phase two pass transistor and the next phase one pass transistor. Symmetri-

cal clock schemes are much easier to implement then asymmetrical clock

109

**;4 ;" -:-.", :< ::.: . .,:,.: ::::: .. .:,.:i. :,' ? '.:,. . ..:. .. :-. .- -. ,, .'" ". ..:.:.. .. ... :--.? . . . ,' .- % .-- ,



schemes. Thus, a speed versus complexity tradeoff in terms of hardware and

synchronization is apparent.

B. PROCEDURES

MOSIS requires that all CIF files be transmitted over the ARPANET. Since the

VAX computer at the Naval Postgraduate School does not yet have this capabil-

ity. the design was taken to Stanford University on magnetic tape and was sub-

mitted for manufacture by the Stanford Electronics Labs(SEL). The completed

chip was returned to SEL approximately eight weeks later. SEL graciously per-

mitted our use of their IC testing equipment to test the chips. This alleviated the

need to design and build a custom made tester which saved an enormous

amount of time.

The tester(a custom made design soon to be available to the public) inter-

faces the chip under test to a computer. A test program must be written in the

"C" programming language for submission to the source program called "MINT"'.

This test program is very similar to the file used to simulate the chip under

'ESTM". The test program causes prescribed high and low voltages to appear at

program defined input pins at prescribed times. Output pins and the expected

values at the output pins are also prescribed in the test program. The computer

then provides appropriate cues to the user if the expected values do not agree

with the actual values. A plan for testing was created. First a short program was

written to perform a perfunctory test of the chip. This program can be seen in

Figure(7.3).The "define" statements in lines(1-6) tell the computer which pin

numbers correspond to named nodes. For example, in line(18), the A vector is

equal to all zeros. Line(19) shows the B vector equal to (0111...1) and the carry

bit (C) set to one. "CLK" forces the computer to cycle through the steps defined

in lne(7). The non-overlapping feature is automatically supplied by the

110

~....... ....... ..... ..... ..................



1 fleflne A 53 51 49 47 45 43 39 37 35 33 31 29 27 23 21 1 9
2 fdefine B 54 52 50 45 48 44 42 38 36 34 32 30 28 26 22 20
3 #define C3 55

. 4 #define PF111 18
I5 TdefLne PT12 17

6 #define S1 6263423456 10 11 12 13 14 15 16
7 #defne CLK PHI1 = 1;PHI1 = 0;PH12 = 1:PHI2 = 0;

8 PHI = 0; PHI2 = 0;
9 A=01101010 10011100; =
1# 0 B--I1II0 010 10 1100 0 11; C= 1;

11 CLX;
12 A=0000000000000000;
13 B=0000000000000000; C=0;
14 CLK;15 A--I I 1 1 11 1 1 11 1 1 1 ;1

16 B=0000000000000000; C=0;
17 CLK;
18 A=0000000000000000;

'19 B = O I I I I I I I 0i ; C = I1;

20 CLK;
21 S?0101000000000000;
22 A=1111111000111000;
23 B=0101110100000100; C=0;
24 CLK;
25 S?0000000000000000;
26 A=1000101000000100;
27 B=0110101111100000; C=0;
28 CLK;
29 S?llllllll III I~i ;

30 A=1000101000000100;
31 B=0110101111100000; C=0;
32 CLx;
33 5?1000000000000000;
34 A=0100111111010100;
35 B=0010101010101010; C=0;
36 CLK;
37 S?010110110011I1 00;
38 A= 0000000000000000;
39 B=0000000000000000; C=0;
40 CLK;
41 5?1111010111100100;
42 CLK;
43 S?0111101001111110;

Figure(7.3) Initial test program

111

,,. ~ .a~*~. ... .. ..- .... . . . .. . . , . . . . . . ' . .- .'. ; ... . ..'



computer. line(21)--(S ? 0101000000000000)- indicates to the computer the

values expected, on the output pins whose numbers are defined in line(6). If

these values differ from the actual values, a series of cues are printed out to the

user's terminal. A sample is shown in Figure(7.4). The second step in the test

plan was to write a more complex program that would supply all combinations of

test vectors to the inputs of the chip. The absence of any cues on the user's ter-

minal would indicate a thorough and successful test of the chip. Unfortunately,

the second step never had to be implemented.

ERROR CUES

1 "./chip.test", line 42: pin 14 should be 0
2 "./chip.test", line 42: pin 15 should be 0
3 "./chip.test", line 57: pin 15 should be 0
4 "./chip.test", line 57: pin 16 shculd be 0
5 /chip. test", line 52: pin 62 should be
S"./chip.test", line 62: pin 64 should be I
7 "./chip.test", line 62: pin 6 should be 1
7 "./chip.test", line 62: pin 3 should be 0
8 /chip.test", line 62: pin 6 should be 0
10 /chip.test", line 62: pin 10 should be 0
10 "./chip.test", line 62: pin 15 should be 0
12 " /chip.test", line 62: pin 16 should be 0
13 "./chip test", line 67: pin 61 shculd be 0
1- "./chip.Lest", line 70: pin i6 should be 0

Figure(7.4) Error cues

C. RESULTS

During step one of the test plan, it was discovered that on all eight chips four

of the output pins remained in the "high" state and twelve remained in the "low"

state continuously regardless of the input vectors. This indication, along with the

fact that all eight chips drew approximately two-hundred milliamps over the

112

' - , ,, . -" . ' . .,J," "." j., ,,,'.,.," "A,''. . . " ,%,. . ." " ." -. . -. -.W. ' -



normal amount of current for a chip of this size, suggested serious problems.

Mlcroscopic inspection of the chip proved this to be the case. A large amount of

the polysilicon "runs" were missing or shifted. The photographs shown in Fig-

ures(7.5 and 7.8) point out just a few of the many fabrication errors that ren-

dered these chips totally useless. Figure(7.5) shows two output pads. Located

between these two pads is a pattern formed of polysilicon. This "poly" pattern

should be directly on top of both of the pads. If It were, the two nearby metal

wire "runs" would connect properly to the pads and the output pads would

operate correctly. It appears that VDD is shorted to GND through this misplaced

"poly" pattern. Figure(7.6) also shows an output pad that is completely missing

the polysilicon layer.

With gross fabrication errors of this nature, these chips had no chance of pro-

ducing any viable results. Since the design has passed the DRC and the simula-

tion, there is a very good chance that, if properly fabricated, a "good" chip will

result.

I..

IJ

118



S. *. *. *.~ . .

'I

4.

.4

.1

9-

4
I
4

Figure(7.5) Fabilcation errors

114 4.

~,--w ~*-w - ~. ' a *M ~ a~~ ........

4 ~*-~ ~ .. *~ . . . . . a



11



- ~ : Z'. 717777 - -- ,. . 77. 1 7.. . . . . . . . .

VIII. ~NLSD

A. SUMMARY

The objective of this thesis was to describe the use of VLSI CAD tools avail-

able at NPS and to provide a non-trivial example of design and implementation

of a VLI circuit using these tools. The tutorials in Chapters 3 through 5 have

provided the necessary background to familiarize the designer with the available

CAD tools. Suggestions were made to lessen the difficulties and examples were

provided to highlight the proper usage of the tools.

The design and implementation of the actual thesis project (16-Bit Adder)

was covered in Chapter 6. This Chapter provided a thorough example of VLSI

design techniques and CAD tool implementation. The results of testing the fabri-

cated chip was covered in Chapter 7. This Chapter indicated that the project

was unsuccessfully manufactured so that evaluation of the design was impossi-

ble. However, since the submitted design passed all of the NPS VLSI validation

tests (dre.and esim), there is a high probability that the design is sound.

B. RECOMMENDATIONS

The following recommendations should be taken into consideration:

1. Re-submit the CIF file for the adder for fabrication and test the returned

chip for design accuracy. (Note: This has been initiated with fabrication

beginning on October 6, 1983.)

2. Design a multiplier chip to be used In conjunction with the adder for

implementation n a digital filter circuit.

l

4qII

• , .,.o ,... " " • .", ,"""", ." .• " " ", ;. ' ''.. .-..' '",:% ",, .' .1,"1. ..6 .



3. Initiate a VLSI design course based on the contents of this thesis and

Reference 1 in which students can combine efforts (or work individually) to

generate CIF fIles of validated design circuits for fabrication and testing.

4. Continue software development in the area of VLSI CAD. Although the

basis of the CAD tools has been established, several programs have not been

investigated. The MIT software provides many such programs with the tim-

ing simulator (rnl) taking priority. Additionally the Berkeley software has

been totally ignored (with the exception of (esrn) due to the unavailability of

*the necessary graphics terminal.

-S

.11

*1



APPENDIX A

INTRODUCTION TO THE VAX-i 1/780 AND UNIX

The Very Large Scale Integration (VLSI) Computer Aided Design (CAD) tools

at the Naval Postgraduate School (NPS) have been assembled from a collection

of software developed by various universities, including Stanford and Mas-

sachusetts Institute of Technology (MIT). Since this software was developed and

tested for use on the Digital Equipment Corporation (DEC) VAX-11/780 com-

puter. this computer was chosen for the NPS VLSI design implementation. This

system uses the Berkeley UNIX 4.1 operating system.

A. THE COMPUTER

The VAX used for VLSI design is operated and maintained by the Computer

Science (CS) Department (located in Spanagel Hall (SP) room SP-500) but has

memory space and computer time allocated for the Electrica Engineering (EE)

Department. The present system contains 2 megabytes of physical memory with

plans to increase this in the near future. The VAX-i1/780 is a general-purpose

computer lying between minis and maxis in performance. Its power lies in its

usage of an increased virtual memory with a 32-bit address over that of its

predecessor (the PDP-11), hence its name - Virtual Address Extension (VAX). It

has a virtual address space of about 4.3 gigabytes. VAX systems are highly reli-
able. Built-in protection mechanisms in both hardware and software ensure

data integrity and system availability.

In order to be able to use the computer to design a VLSI circuit or system, a

few basic concepts and procedures must be understood. The following sections

provide background for the VLSI designer to work effectively with the computer

system.

li

II



1. Obtab-AnW An Account

To obtain an account on this computer, inquire in the CS Office (SP-515).

Once a need has been established, an account and a password will be assigned.

Additionally, the combination for the cipher lock of the terminal room should be

obtained. You are now ready to locate a terminal and familiarize yourself with

the system.

2. Termvynal Room

The public access terminals of the VAX computers are located in room

SP-51 1. The terminals used for VLSI design face the windows in the north wall

(to the left when entering). There are five ADM36 terminals and one GIG] termi-

nal available for public use. The GIGI terminal is capable of color graphic

displays as weli as black and white coding. The printer for the computer is

located in room SP-500 (the computer room) and can be accessed through the

door in the south wall of SP-51 1.

Use of the terminal room is controlled by the CS Department. The room

is usually open from 0800 to 1630 on normal work days. At all other hours, the

door is locked with a cipher lock.

The following rules apply to the terminal and computer rooms:

* Ensure that the cipher locks are locked during non-working hours.
o Prior to leaving; logout, turn the terminal off and clean up the area.
* After working hours, secure the area by turning off the printers and lights.
(Provided no other users are using the area.)
NO SMOKING in the terminal or computer rooms.
Place excess computer paper neatly in the available boxes for recycling.

3. Logi/Logout Procedures

The master ON/OFF switch for the ADM38 terminal is located on the lower,

right, back of the video monitor. (If the GIGI terminal is being used, there are

two ON/OFF switches. The switch for the terminal/keyboard is located on the

back, left of the keyboard and the switch for the monitor is located on the

119



upper, right, front of that unit.)

To login, turn on a terminal. After a short warm-up time and a cursor has

appeared on the display, hit the RETURN key (<CR>). You should see

login:

It this prompt does not appear or if a strange display occurs try one or all of the

following:

*.Type logout then hit RETURN.
* Turn the terminal OFF then back ON. Hit RETURN.
* Seek help from one of the technicians.

If the login prompt appears, type in your account code (usually your last name)

and hit RETURN. The screen should now display

login:
password:

Type in your account password (usually your last name) and hit RETURN. In

order to protect your access, this entry is not displayed on the screen. If you

make a mistake, the following will be returned

Login incorrect
login:

After a correct login has been completed, the system will display several lines

of information for the user. The next prompt for the user will be

TERM = (vt 100)

This is a request for the terminal type that is being used. All terminals in the

terminal room have a vtlOO display format, so simply hit RETUIRN. (If you are

120



* ,

using a terminal from a remote location via the dial-up system, type in the type

of terminal or type in tty then bit RETURN.) At this point, the system displays a

list of the current users and then stops with the system prompt

The percent sign (%) is the UNIX prompt which indicates that the com-

puter is ready for a system command. Some of the more useful commands are

presented in the section Putorial of UNIX commands.

9 When you have finished using the computer, sign off by typing

logout <CR>

and the system will display the login prompt again. To secure the terminal, sim-

ply turn off the power switch(es). Then clean up the immediate area.

4. Editing w th 'W

The most popular text editor for the UNIX system is "vi." To familiarize

yourself with this editor, login then type

2A. tutorial <CR>

The display will give you prompts to complete the self-paced tutorial on the "'T'

editor. This tutorial will take a few hours, but will be worth the time in the long

run. Once you are familiar with this editor, you are ready to learn about the

other system commands.

5. 7ftorita of UNIX Commands

After logging into the system, the UNIX prompt (%) indicates that the sys-

tem is ready for a command. In this section, a selection of valid commands will

be presented in order to familiarize you with the computer's responses. (This is

121

, . .• " -e -. . . . -. , . . . . .. .. . . - - - - -
• . . . C' . . . . • • ** *- * . '*''. .. . . . C .. . . -. . . - - .



not intended to be a complete list of valid commands but is an introduction to

the more commonly used ones. For a more complete tutorial, see Reference 2.)

Prior to trying the commands, a few general comments are necessary. In

.issuing any command, if the system "locks up" or if the display appears unusual

in any way, try one (or all) of the following:

0 Press the BREAK key then hit RETURN.
• Simultaneously press the CTRL and C keys (<CTRL>C).
0 Press the SET-UP key then the 0 (zero) key then hit RETURN.

To correct an input error, press the CTRL and H keys simultaneously (<CTRL>H).

This will cause the cursor to back up over the previous character typed. (The

character may not be erased but has been eliminated from the computer

memory.) To eliminate a complete line from memory, press <CTRL>U. To stop

a job that is in progress. press BREAK or <CTRL>C. ]t may be necessary to press

RETURN to get the system prompt.

In the following tutorial, user inputs are in itaLics and must be followed by

a RETURN. System commands are in bold type.

Prior to starting this tutorial, use vi to create the following files:

tempi:
111111

This is the first of two temporary
files to be used in this tutorial
111111

temp2:
2P.2222

This is the second of two temporary
files to be usedin this tutorial
222222

a. Pauwd

To change your login pasiword from an old password to a new pass-

word (This is advisable, since your initial password is usually the same as your

login code word.), type

122



passwd

and the system will ask for the old password. if you type in the old password

correctly, the system will request a new password. Finally, since none of the

passwords are displayed on the screen, the system will verify that your entry is

the password that you wanted by prompting you to type it again. The display

should be

passvwd
old password:
new password:
Retype new password:

and if the last two responses were identical, your new login password will be

effective.

b. Mail

You can send or receive messages through the computer using the

-'P mail function. To send a letter to another user (or a reminder message to your-

self), type

mail user-name
(Your message)
< CTRL>D (or.)

The CTRL and D keys when pressed simultaneously (or a period at the beginning

of a line) will return you to the system prompt and automatically send your

mail.

* .4,.If mail is received, the computer indicates this fact with a message

Of

You have mail.

123



when you login, or a message of

": New mail for (your-name) has arrived:

if you are logged on when the mail arrives. To read the mail, type

mad

A list of letters saved will be displayed and can be read using

P

The p command will print the first message in your mail box. To delete a letter.

use the d command. To reply to a letter, use the r command. When you are

finished using the mail function, you can exit to the system by typing

q

c. Man

To see the documentation of a UNIX command (to determine its

correct usage). type

"an (coma1nd)

and that command's description from section 1 of the UNIX ProgTrCzTner's

Manual will appear on the screen. For example, try

man mail

The manual page for the mail command will appear on the screen Hitting the

SPACE bar (<SP>) advances the output to the next block of lines until the end of

124

'p1 ... ; * . . . . . ... ."- -,, ,- .. . ." " . - - ,' .. . .. . •"



the manual is reached. To exit from man prior to reaching the end of the

selected manual page, hit q.

d. lMe

The best method to display the contents of a file for the sole pur-

pose of reading it is to use the more command. This function produces a display

in the same format as man. but is used for files other than manual pages. Try

typing

'o, i. f.tortal

If the file "vi.tutorial is in your directory (it should be if you attempted the vi

tutorial of the previous section). then the first block of lines for that file will

appear on the screen. You will also observe a white block in the lower, left

corner of the display. This indicates the percentage of the file that has been

examined. As with the man command, pressing <SP> will advance the display

and the function can be ended with q.

e. Who

Now try typing

who

You should see a list of the users who are currently logged on to the UNIX sys-

tern. This is a good time to look at one of the system's special functions, the

pipeline function (D. As an example of pipelining, type

9.,9I sort

The system response is a sorted (alphabetically) version of the list of users. The

pipeline command sends the output of the left argument into the right

125



M3* 7.7 .- 777

argument.

If you type

the system will respond with your login name, terminal and time of login.

f. Tty

To see your terminal designation, type

ttij

The computer will respond with your terminal name.

S. Pod

The pud command requests the name of your present working direc-

tory. This is the directory in which you are working. Type

puwd

and the computer will respond with

/work/your-name

This is your login directory which is under the directory "work" which is in the

root directory "I." (There is more on directories and their hierarchy in the UNIX

section of this appendix.)

h. Cd

To change your present working directory, you must use the cd

command. Try typing

cd/worc

128

a ,' ,. ,, . .,.. ,, , ,, -..., 5......-. .- -.... ,. . . . . .. .



You have now moved to the "work" directory which can be verified by typing

The response of the computer should be

/work

which tells you that you have moved into the "work" directory.

Now type

cd

The ad command, when used without an argument, sends you to the default

directory which is your login directory.

Another way to change directories is by typing

cad.. (two periods after the cd)

which moves you up one directory in the hierarchy. If this command was typed

while in your login directory. it would move you to the "work" directory. Try it,

then do a cd to get back into your login directory.

i. Date

If you wish to see the current time and date, type

date

and the current time and date will be displayed on the screen.

127

N--4



j. Le

The In command causes a list of all files and directories in your

working directory to be displayed on the screen. The generul form is

LS

When this command is typed. the files in your present working directory will

appear on the screen in alphabetical order.

Now try typing

The 4 is an option that controls the output of the In command. The general form

of an option is -z where z is the paticular option(s) that you wish to activate. In

this case the I option causes a long printout. Note that the display is now a long

version of your working directory's files. This output provides the total number

of 512-character blocks, the permission mode for each file or directory. the

number of links, owner, size in bytes (or characters), and the date and time of

the last modification for each file.

Another use of Is is for listing files in another directory. Try typing

I /work

The result is a display of the files and directories in the "work" directory. If you

examine this output, you will see your user name along with all of the other user

names for those who have accounts on the UNIX system.

k. Chmod

A command that may be of some use later is chmod. This allows you

to change the protection permission modes on any file or directory that you

128

, , ..- < . ... ..... ... a,,,'".. . .. ... , .... . .. .. . . .. .. ,.. ..... .- , .. , ..... ... . .. ..i,- , ,_'; ,.,-= ,-.., ,-_,,_,.. a " a. "- ' " " - . : -... .< ; .. . .- - - ' , -.-. . .. . .; .



own. The permission modes (as displayed with the Is 4 command) indicate who

can access or modify a given file. These modes can normally only be changed by

the owner of the file. When a file is created (as with vi the default permission

modes are

-rw--r-r-

which means that the file is a plain file (the first -) and the owner has the per-

mission to "read from" or "write to" the file (rw). Additionally, any users in your

group (as determined by the login type) have permission to "read from" the file

(the second r) and all other users also have the "read only" premission (the

third r).

For example, type

Ls 4 tampl

and observe the permission modes. Now type

chmod +z templ

To see the effect, type

is 4 temp I

*o1

You will observe that the permission modes have been changed to

-rwxr-xr-x

which gives all users of the system permission to execute (x) your file. Since

this is not an executable ile. change the permission modes back again with

129

V.I, _,,.,.,5 5 - . * , . ... .... . . .....- , .. ,. .. .... . . .. .....-.... . . ... -



-. ..' 
. .'

chonod -z tempi

To see the effect, type

In -1 templ

Now ensure that the modes have indeed been changed. A complete list of the

hnd options can be obtained from Reference 2 or the UNIX Progrtmmer s

Manual [Ref. 3].

1. Cp

To copy a file from one directory into another or simply to make

another copy of a file in the same directory, use the ep command. As an exam-

pie. type

cp tempi temp
more temp

You will observe that "temp" is an exact replica of temp 1.4,

Now try typing

op temp 1 /work /temp

The computer returns an error message of
19?

cp: cannot create /work/temp

Since you don't own the directory "work" and don't have permission to "write to"

that directory, you can't create the file "temp." If you owned another directory,
this would be the method to copy a file into It. If the name of the Rle ("tenp" in

this case) is omitted from the command, the default would be to keep the same

name in the copy.

130

.;..'-*%" ' " , ..T , , ' , " ", " .' ' , . , ¢, : : , : , .: .: , ' : . .' : ... . . -" ' .? , i' .-> .--. .." ., ., -: , ., ., .,- .- ,.V.



-- A .-.- -u ' - .". .. -' - - - . - ' - . - i : ' ' ' - -,

m. Mv

-* The my command is identical to the op command with the exception

that it moves (vice copies) the named file into the named destination. Try typ-

in&

mv tamp nw

To see the effects, type

You now have a file labeled "new" and the "temp" file has been eliminated. You

can also move a file into another directory in the same manner as it can be

copied.

n. URm

To remove a file from a directory, use the rm command. Type

rm nw

To see the effect, type

is

You have now removed the file "new" from your directory. You can only remove

files for which you have "write" permission.

o. Lpr

The lpr command sends a named file to the line printer queue. Try

typing

O"lr tIP1

, 131



. w wrrn w.. .. wt. r - rn. ,- -, .: -_ -" , . ° ". . , . . - . :. ,../ . • . . . . . . .

"'I

i% you now go into the computer room, the nearest printer should have printed

the file "temp2."

It will probably be necessary to advance the printer so that your

output can be torn off. To do this, put the printer in standby (off line) by press-

ing the ON/OFF LINE button. Then. advance the output by pressing the TOP OF

FORM button. Now, put the printer back on line by pressing the ON/OFF LINE

button.

If your file is not printed, make sure that the printer is on line then

type (at your terminal)

clearprita?

This procedure should enable your output. If this does not work, call for help.

p. Cat

The cat function (short for concatenate) successively displays the

contents of one or more files. The resultant output can be dircLr.mcl into another

file or displayed on the terminal. To display the file "tempi," type

10 cat temp l

and the contents of that file will be displayed on the screen. Note that for long

files, the NO SCROLL key can be used to stop the display from scrolling.

To use the same command to combine two files into a third tile, type

cat tampl tawp2 > tamp3

The result of the concatenation has now moved directly into a file "temp3" This

file can now be inspected using

132



cat teMp3

The result will be a screen display of the combiation of "tempi" and "temp2."

Note that the direcUve (>) causes the result of the left argument to be placed

into the right argument.

q. Mkdir

If you have the need to make a directory under your login one, use

the mkdir command. Try typing

vMidr report

To see the effect, type

IS-1

You have now created a directory "report" under your login directory.

r. At

To execute a file at a later time (even after you have logged off), use

the at command. As an example of the use of this command, first create an exe-

cutable file (using vi) called "delay."

delay:
echo "The file delay has been executed!';

If you now look at the permission modes for this file (using ls -1 delay) you will

see that it is not authorized for execution. Therefore, do a mode change

chmod +z delay

Now, type in the at command with a time 5 or 10 minutes from the present time

using

133

qm



- . o . . - - -._o. -°--- . , - . .-- - . -. -%... . . .. .. r - " . . . - " "

at (tinma-to-execaste) deaty

You can now continue with the tutorial and the specified message will print out

on the terminal at the designated time. ( echo is a c-shteU command and will be

covered later.)

s. .P
The process status command ( pe ) is used to provide status infor-

mation for the processes that are currently active. In order to demonstrate this

function, we will start a process "in the background" using the "and" sign (&). A

good process to start is sort since it will last a long time. If you type

sort -r /usr/dict/words -o uxwrd.sort &

the computer will respond with a process number for this sort. Now type

PS

The display will indicate what processes are in progress and will give the

corresponding process number. To stop the sort routine, continue on to the kill

section. (Note that the sort function is explained further in the UNIX

Programmer's Manual; however, an understanding of it is not necessary for this

tutorial.)
mt. ,a%

To stop a process that is in progress "in the background," use the

Mil1 command. In order to stop the word sort initiated in the previous para-

graph, type

kill (process-nmber)

134



where "process-number" is the number obtained from the previous pe com-

mand. If you now type

PS

the computer output should not include the sort routine.

u. History

The history command is very useful if you wish to repeat a previ-

ously executed command. It is a c-sheU command that provides a list of the

commands that were executed since login. Type

history

and note that a number is assigned to each command that was executed To

execute any of these commands again, sLmply type

?(number)

where number is the number of the command you wish to execute.

Another way to re-execute a command is

!X

where z is the first letter(s) of the desired command. For exampie, type

cat temp2

and the "temp2" file will print out, Now type

!C

135



and the computer will respond with the full command followed with the print out

of "temp2." A note on the method of issuing a command -- The computer

searches your previous commands from latest issued to first; therefore, if you

specify a command with only one letter, the last command starting with that

letter is executed.

This concludes the tutorial. Although not all commands were

addressed, you should have enough experience to use the UNIX system for VLSI

design. Try experimenting with various commands to see the result. Experi-

ence and trial-and-error are the most effective ingredients to learning the UNIX

system.

B. THE UNIX OPERATING SYSTEM

The UNIX operating system is a very complex, but flexible, system which gives

the experienced user a powerful tool toward writing successful programs. Now

that you have enough experience to use the computer, a closer look into the

-. operating system will probably round out your knowledge and help to make your

use of the computer for VLSI design a little easier.

1. Hiararchy

The UNIX system uses a hierarchical approach to file management. The

"root' directory (/) is the starting point for this arrangement with all other

* directories and files stemming from it. Under the "root" directory is the "work"

- * directory which contains all of the "login" directories for the users of the sys-

tem. It is in this "login"' directory that you will start your own hierarchy of files

* . and directories. Each file (or directory) that you form will stem from your

-a: "login" directory. There is no set format for this hierarchy, so it is left up to the

user to form a structure that will best benefit him.

ft. 138



2. ManuaLsJ

The manuals for the Unix operating system are located on the tables in

the terminal room (SP-511). Although these manuals are quite extensive, they

are well written and provide all the information that you will need to operate the

system. The manuals are grouped together on one rack and are separated with

heavy dividers. They are labeled UNIX PROGRAMMER'S MANUAL and consist of

the main manual (Volume 1) and three volumes of supporting data (Volumes 2A,

2B. and 2C).

Volume 1 contains all of the valid UNIX commands and is the most com-

monly used. This volume is divided into eight sections:

1. Commands
2. System Calls
3. Subroutines
4. Devices & Special Files
5. File Formats & Conventions
S. Games
7. Macro Packages & Language Conventions
8. Maintenance

Of these eight sections. the first three will be of the most help to the average

user. In these sections are the correct usage of the general system commands

and routines. Although it appears that this volume is too extensive to be of

much use, the Permutedi In~dex starting on page xxiii makes it easy to locate any

command that is of interest.

For example, try to locate the manual page for the mail command. Look-

ing in the Pe77muted Index under "mail" (note the alphabetical order) you will

see an entry

mail: send and receive mail ............... mail( i)

* This entry tells you that the mail command is located in Section 1(i.e., it is a

137



*.:4

command). Now, if you look in that section of Volume 1. you will find the manual

page for this command.

Volume 2A is the initial supplement to the Programmer's Manual. It pro-

vides information to help the beginner get started using the UNIX system and

the "C' language.

Volume 2B is an extension of 2A covering special features of the operating

* 'system.

Volume 2C is the second extension of 2A. It covers the editing routines as

well as programming in the c-shell.

3. C-ShU

The c-sh.U is a command language interpreter used by the UNIX system.

It is described fully in Volume 2 (A and C) of the Programmer's Manual. so I

won't spend a lot of time on it. However, if you recall from the section Tutorial

of UNIX Commands under the tutorial on at, you initiated a c-shelt command of

echo. This was actually programming using c-shell. Although it may not seem

apparent now, this type of programming can be an invaluable aid to you. For

example, if you have a series of commands that you wish to execute in order

(especially if you need to repeat the series often), you can write a program in c-

shell containing those commands and then you will need to execute that one

program only. As an example, this could be a file "combo"

who > store
sort < stofre > out
cat out

If this Me is executed, the result would be a sorted version of the system users

who are logged on. This is a trivial example but should serve as a introduction to

programming in c-shaLl.

138



4. M*-oduction To Progruing In" C'

The UNIX operating system was designed to accept programs in a pro-

gramming language called "C". Because of this fact, the data files necessary to

complete a VLSI design use the "C" format. Although it is not necessary for the

designer to be an expert "C' programmer, a basic understanding of this

language will be helpful.

The general format for a "C" program is:

file.c:
/* 7his is a basric Cprogram 0/

pritf( 7his is test print out O);

In the above example. you can see that comments are set of1 by "/ */." The

declaration "main(o" indicates that the main function of this program is labeled

"main" and has no arguments. The function definition begins with "J" and ends

with "I". Within the main function is another function "printf" which has as its

argument the sentence within the quotation marks. "Printf" is a system subrou-

tine (section 3 of the UNIX Progranmer's Manual ) which causes the argument

to be printed on the standard output (the terminal). Each program statement

must end with a semicolon (;).

"C" is a "free-form language that doesn't care what style or format you

use, as long as it is syntactically correct."[Ref. 4, p. 11] However, indentation

can and should be used to make the program easier to read. Most of the state-

ments are written in lower-case letters with the exception of symbolic names

and constants.

139

. . ..o°--. . .. . * .- " . . .. . . . . . . . . . ..'°o . . . . •.... . . .... -o-",.,o . . , . o -.



-.. To compile the example "C" program, type

cc ftle. c

The result is an executable file called "file." (cc is the "C" Compiler and is docu-

mented under section 1 of the Programmer's Manual.) To execute this file, type

AS.e

and the specified statement will appear on the screen.

This has been a very brief introduction to "C" but should provide enough

basics for the user to continue with learning VLSI design. If more information is

desired, consult the UNIXProgrammer's Manual [Ref. 31 or Reference 4.

140

.:-
"o * - . *. o,4 . .



.. !

I.

APPENDIX B

MANUAL PAGES FOR VLSI CAD TOOLS

*14

...."....'........,..,..,.,.,"........"....." ....... ........"'....."..- .....•."...".."".,."".'"-."'" " "" .' '. ".""-" a-



CIF( CAD1) UNIX Programmer's Manual CIF ( CADi)

cif - convert a cif file to cifout format

cife.Vcf [-o., ,,co] [-qbcdgimnpq] [-y] [-z] [-h]

04 converts a cif file to cifoWt format. Cif flies, which are the Caltech Inter-
mediate Format. are described in the Mead and Conway text.
The -o option specifies the name of the output file. If not given, the output file
has the same name as the input file and the extension ". co".

The -q option says that the given layer names are not valid. For example, in the
itandard nMOS you would use -qbnq since buried contacts and two level metal
and poly are not allowed.
The - option says that the Y layer is valid and should be replaced by the Z layer.
This allows preprocessors to display the outline of a box with no internal stip-
plea.
The -z option suppresses the printing of warning messages about zero area rec-
tangles.
The -h option causes CIF to list node numbers and lower left corners of all rec-
tangles with nonzero node numbers to the error device.

cifout(cad5)

4.4

.4'.G

i5.

r4

; '. ' % :- :? . . .: . -i...4 ' -- "-."-" . '",:. . . . - . .. , "..



SCIFAR( CADI) UNIX Programmer's Manual CIFAR (CAD 1)

NA
clfar - save cif files in archive format suitable for use by cifload

far [ options ] file.lib file.cif

Ofar prepares an archive fie of CIF cells suitable for use with cifload. The stan-
dard use is to have the input CV file split up into archive units each containing
one cell. This is useful for libraries which do not have the external and entry
point records present. War can also be used to archive CLL produced files.
which already contain the information necessary for CIFLOAD.
-eaw optiams]

Letters following are options used to control archive program ar. This
switch is requiredl.

-Ua Specifies that the CIF file given is not to be split up into individual cells,
but that it is to be entered into archive fie as a unit. The external and
entry records must already exist in the file if this option is used.

A file to be processed by cifor must have all calls, DS and DF commands as the
tirst character of the line. The required linkage is specified in comments occur-
ring before the DS. Each comment starts in column 1 of the line. The command
(ezt <number>); specifies that the following cell requires the cell named
<number>. There may be several of these before a cell. The command (ent
<number>); specifies that the next subfile contains the cell named <nuTber>.
Since several cells can be contained in a single archive subtile, there may be
more than one.

Fa
atmpXXXXX ctmpXCCOO temporary files
[0-9]f.ctmp temporary files containing CIF cells
/vlsi/lib/loca/splitflle splits CIF file into separate files
/vlsi/lib/local/cifar
ar system archiver

-ALS

cif(cadl) c12(cadl), cifload(cadl), ar(1)

DIAGNOSTICS
Diagnostics may come from lffar. splitfile or ar.

AUMHOR
Wayne H. Wolf, Esq.

BUGS
Places temporary files on your directory. All files on your directory with names
*.ctmp are deleted.

143

° A, j • " -, , , • . ° . . . . . . . - . - . . ' . . . . . , • . . . % . . .

C,,4 - - . .. .. . ., . . . . , . ... . .. .



CIFLAD ( CAD1) UNIX Programmer's Manual CIFLOAD (CAD 1)

NAM
cifload - concatenates cif files and needed library cells from archive files

[fted (options ] ...flle.lib ...... file.cif...

ifload searches libraries for cells needed by CIF files. The input CIF files con-
tain records at their head declaring which library cells they need; each library,
maintained in archive format, contains a set of files with declarations of what
cells they contain. afload does not guarantee that it will satisfy all externals.
This is done to alleviate the problem of deciding what externals are satisfied by
other OF files rather than library files. The linked set of cells appear on the
standard output.
Options:
- States that the standard input also contains a ClF fiLe. This file will be

made the last file to appear on the standard output; therefore it should
contain the final cell call and the end statement.

/visi/b/local/cifload

cif(cadl). cl12(cadl), cifar(cadl), ar(l)
mhaw 3nq

Complains if there are no Cll files input. May also blow up if there are a large
number of external references in a single file.

=MOhCB
Wayne H. Wolf, Esq.

BUGS
Can handle only a limited number of external references or entry points from asingle file. The seeking of the next archive header is done in a slow mannerbecause the nature of the archive ile is not well documented.

144



CIFOUT (CAD5) UNIX Programmer's Manual CIFOUT ( CAD5)

fle.co output of CIF translator

A cout file is produced by the CIF translation program. The file represents an
integrated circuit as a collection of rectangles with layer information for each
rectangle. The rectangle Information is written in a binary format. There is also
some control information embedded within the file. This information is always S
at the head of the file and is written in ASCII.

All control lines start with -#" as a key, and all control lines must be collected
at the beginning of the file. The last control line must be #end. The maximum
length of a control line is currently 80 characters. Immediately following the
"#" is a keyword. The keywords are program specific and consequently subject
to future improvements. Currently used keys are:

<3pm.>
for comments

bounds'"

minlmwu.x minimum.y delta-x delta-y

me Input file name

tells rplot to not print the comment lines

document
tells rplot to print on 8.5 x 11 inch paper

repot
tells rplot to print on 8.5 x 11 inch paper with margin for hole

punch

scale scale to be used in plot, in lambda/inch

nomcale
data is not to be scaled before plotting

Following the control lines, if any, are data lines. There is one data line per rec-
tangle. The records are written in binary form, and are to be accessed only
through standard procedures. The access procedures return floating point
numbers, but th, file is currently accurate only to within .5 lambda. The layer is
returned as a character. Current layers are:

C Contacts
D Diffusion
G Glass
I Implant
M Metal
P Poly
Z Unknown The node number is character. If the node number = 99

then the rectangle is at a 45 degree angle (rotated clockwise about the lower left
corner).

FUM
/vIst/lib/local/cifout
/vlst/stanford/src/cif /cifout-data.h definitions for cifout i/o
/vIsl /stanford/src /cf /cifout-io h standard i/o routines
/vlsl /stanford/src /cifplot /scale. h scaling package for plotting programs
/vlsl/stanford/src/clfplot/scale-factor.h device-dependent parameters for

145



4- 4r e: - .- --. . -

CIFOUT (CAD5) UNIX Programmer's Manual CIFOUT CAD5)

cif(cadl), window(cadl), rrplot(cadl)

4*4



* - -°-".
-

. --- U- -m-w

CLL( CADI) UNIX Programmer's Manual CLL (CAD1)

cl - process cll, cif, and sco files, plotting the output" SYNOPS

enl [ options ] ... file

CU is the VLSI project's CLL language processor. It accepts several types of
arguments:
1) Arguments whose names end with "cl" are taken to be source files in CLL.
2) Arguments whose names end with "cif" are taken to be source files in CIF"

I3) Arguments whose names end with ".co" are taken to be cfout(l fles.
4) Arguments whose names end with ".sco" are taken to be sorted cifout(V)

, files.
"* 5) Arguments that start with "-" are taken to be switches.

The basic operation of cU is to process the cell library externals and the ".cll"
files in order, creating a CIF file. This file is then processed together with the
CIF for the cell library and the ".cif" tiles to create a cifaut(V) file. It is possible
to start with a single ".co" file, instead of using ".cll" or ".cif" files. Finally, any
".sco" files are overlaid on top, and the final cifout file is then plotted.
The processing can be modified by the following switches:

-. -lz Include cif library libx.ci.-
--b Specified area is blocked out (not plotted).
-c# Produce a ".cif" file without a final call or end statement. If # is present,

use cif numbers #, #-+I. etc. Such a file is suitable for reprocessing by
cL1.

-C Process all ".cll" and ".cif" files into a single ".cif" file with the specified
cell libraries and a final call and end. This file will be suitable for fabrica-
tion.

-d Plot is formatted to fit in document style (85 X ' in.)
-P Plot the output on the Versatec plotter.
-r Plot is formatted in report style (room for binding).
-gz y Plot a grid whose x interval is x lambda and whosr v interval is y lTmib4,7-

(Default interval is 5 lambda).
-4# Use a scale factor of # lambdas per inch.
-nmL Causes the named layer, 1, to be omitted from the plot. The layer, 1, can

be one of more of: c. d, g. i. m. p.

Set the minimum x to be plotted as #1 lambda and the maximum to #2
lambda. Either #1 of #2 can be omitted, in which case the actl,-I
minimum or maximum will be used.

Set the rinimuni y to be plotted as # I I cl-ibda and the nTolinuvx t1 -
lamnbda Elihor ,1 of #? r-an be oniitkt.l, in which raze h,,, I .1
nilimuni or tLa, -.Jmurrt will ie u-Zed

-s1. #2

147

_1 -A



CLL(CADi) UNIX Programmer's Manual CLL(CADI)

Divides your chip into #2 strips and plots the #1 'th strip.
--S# Divides your chip into # strips, and plots all of those strips.
_4F Create ial version of project. The -F switch sets the -C switch, which vI11

cause cii to create a complete cif file. A special feature of the -. 1 swtc
is that the output tile name is "./fInal.cif" and all optimization is
switched off.

-T Plot the output on your terminal, using tplot. You have to be using a
GIGI terminal.

-X Just do the pre-processing pass creating a '. xcll" file.
-B Use backup cif expander. (This is for testing, don't try it yourself.
-A Use alternate copy of c112 language processor. (This is for testing, dcn't

try it yourself.)

-D Trace operation of ell.
- . Z Use alternate CIF loader (that is, cat).

/vlsi/Lib/local/lib.cif cif for the cell libraries
/vlsi/tmp/cll7""' 9? temporary
/lib/cpp preprocessor
/vlsi/lib/local/cll CLL source program

*44/vlsi/lib/local/c112 CLL language processor
-P../vlui/Iib/local/acU2 Alternate CLI language processor

/vlsi/lib/local/cifload CIF linkage editor
/vlsi/lib/local/cif CIF language processor
/vlsi/lib/local/acif Alternate CIF processor
/vlsi/lib/local/rsort sorts cifout filies
/vlsi/lib /local /merge merges ci! out files
/vlsi /lib/ local/ window windows cifout files
/vlsi/lib/ local /rplot plots on the Versatec
/vlsi/lib/Iocal/tplot plots on GIGI terminals
/vlsi/lib/include include tles
/vlsi/stanford/src /cll /pathnames.h actual names of files used

SEE ALSO
Tim Saxe, CLL - A Chiip Layout Laznguazge.
cif(cadt), window(cadl), tplot(cadl), rplot(cadl), c112(cadl)

DLAGNO~flCS
The diagnostics from CLL and CIF are supposed to be self-explanatory. Hovwe-ver.
syntaxz error often occurs for odd reasons. The normal solution is to correct all

S of the errors that you can easily locate and try again. Note that a plot will not
be generated until the CLL and CIF processors are c ompletel, hiappy.

BUGS
No geometrical or circuit error detection or correction. ItWhat you say is v-:hat
you get.

148

54



k

CONVERT ( CADI) UNIX Programmer's Manual CONVERT ( C.AD )

convert - converts a binary file to ASCII
SYNOPSIS

convert < fle
DESCIFMION

Cbnvert takes a binary cifout file from standard input and converts it to a read-
able ASCII format sent to standard output.

/vlsi/lib/local/convert

EE ALSO
cifout(cad5), unconvert(cadl)

BUGS

149

, , .+ ,. , .,-. .,, .. ...- . .' ++ i -. . "+ + -..- ..- . ..- - + . i" . i . + - • . " .".",+"4 .



DRC ( CAD1) UNIX Programmer's Manual DRC ( CAD! )

NAM
drc - design-rule-check a circuit

SYNOPSIS
dre flie [shift]

" IDESCHU'flON

Drc does a design rule check of the input file. The file must be a sorted cifout
file (with a .sco extension). This is done with cli. The output goes tof!e.drc.

Drc will check for Mead & Conway design rule violations with one general excep-
tion. Electrically connected areas will not generate seperation errors, even if
they are on different layers. In other words, drc will not enforce the 1 lambda
separation between poly and diff if they are electrically connected. This means
that a 2 lambda wide diffusion wire can run along a polysilicon wire, which is
dangerous. A mis-alignment, during fabrication, of the polysilicon over the
diffusion will increase the diffusion resistance, which can be bad if the overlap is
very long.
The shift option will simulate a possible fabrication mis-alignment and do a more
conservative check. It does this by expanding the poly layer by 1 lambda and
then removing the expanded layer from the diffusion layer before doing diffusion
minimum width checks. The default check, no shift option, is consistent with
the rule that diffusion only has to extend beyond transistors bv 2 lambda, but

J the shift option allows a tighter check if you want it.

The output file format consists of a message followed by coordinates of designrule violations. For example, part of an output file might look like:
poly min width errors:
diff minwidth errors:
10, 20
11, 20

indicating there were no polysilicon minimum width e'rrors, but there were
diffusion minimum width errors. Note that one error can cause several coordi-
nates to come out.

The messages are self explanatory, although there are several quirks. The shift
option causes the most commonly misunderstood error: a "diff minwidth error"
caused by a poly-diff spacing error. This typically occurs at butting contacts.
This happens when an arbitrary one lambda polysilicon shift reduces the
diffusion line width to less than two lambda.

Pullups with "wide" butting contacts can also cause confusing errors. This hap-
pens when the diffusion overlap at the butting contact is wider (more than four
lambda) than really needed for the butting contact. This can prcduce
transistor-poly surround errors, transistor-implant surround errors, and floating
transistor dra; errors. The solution is to only use as much poly-diff overlap as
is necessary for the butting contact. Any extra overlap only adds unwanted
capacitance anyway.

SEE ALSO
cll(cadl),cifout(cad5)

DIAGNOSTICS
If some part of the design rule checker fails, error message will appealr in l.u
output (.drc) file.

150

"............. . .



DRC(CAD1) UNIX Programmer's Manual DRC (CAD 1)

neettGS
While drc.is running it will produce many files of the form file...z=, where xx is'":any two letters. These files are deleted at the completion of the drc, but

uncatchable signals (like kill -9) can stop the drc and leave the files around.

I'

4

151



-, . us. - - T~ -7 . -. --' .-. % ._ "a ... .. ..-- - - -I

ESIM( CAD1) UNIX Programmer's Manual ESIM (CAD 1)

esim - event driven switch level simulator

.im[fiel [flie2 ...]]
DEFFPION

Dim is an event-driven switch level simulator for NMOS transistor circuits.
Esim accepts commands from the user, executing each command before read-
ing the next. Commands come in two flavors: those which manipulate the electr-
uica network, and those to direct the simulation. Commands have the following

simple syntax:
c argl arg2 ... argn <newline>

where 'W' is a single letter specifying the command to be performed and the argi
are arguments to that command. The arguments are separated by spaces (or
tabs) and the command is terminated by a <newline>.

To run es*n type
esim Mel file2 ...

Di will read and execute commands, first fromfiel, then flie2, etc. If one of
the file names is preceded by a '-', then that file becomes the new output file
(the default output is stdout). For example,

esLm f.sim -f.out g.sim
This would cause est to read commands from fm, sending output to the
default output. When f.sim was exhausted, f.out would become the new output
file, and the commands in g.sit executed.

After all the files have been processed, and if the "q' command has not ter-
minated the simulation run, esin will accept further commands from the user,
prompting for each one like so:

The user can type individual commands or direct estm to another file using the
"0" command:

ima> 0 patchfile.sim
This command would cause esirn to read commands from "patchflle.sim",
returning to interactive input when the file was exhausted.

It is common to have an initial network file prepared by a node extractor with
perhaps a patch file or two prepared by hand. After reading these files into the
simulator, the user would then interactively direct esim. This could be accom-
plished as follows:

esim file.sim patch. 1 patch.2
After reading thj lies, a im would prompt for the first command. Or we could
have typed:

Z esim file.sim
s m> 0 patch.
sim> 0 patch.2

Netwairk ManipulaUon Commands

The electrical network to be simulated is. made up of enhancement and deple-
tion mode transistors interconnected by nodes. Components can be added to
the network with the following commands.

e gate source drain
e gale source drain length width key xpos ypos area

Adds enhancement mode transistor to network with the specified
gate, source, and drain nodes. The longer form includes size and

152



ESIM( CAD1) UNIX Programmer's Manual ESIM ( CADi )

location information as provided by the node extractor - when
making patches the short form is usually used.

d gate source drain
d gate source drain length width key xpos ypos area

Like "e" except for depletion mode devices.
C node 1 node2 cap

Increase the capictance between nodel and node2 by cap. Esimr
ignores this unless either node I or node2 is GND.

= node namel name2 name3
Allows the user to specify synonyms for a given node. Used by the
node extractor to relate user-provided node names to the node's
internal name (usually just a number).

Icomment...
Lines beginning with vertical bar are treated as comments and
ignored -- useful for deleting pieces of network in node extractor
output files.

i node
Input record - output by node extractor and not used by esim.

Curr .ntly, there is no way to remove components from the network once they
haw been added. You must go back the input files and modify them (using the
comment character) to exclude those components you wished removed. "N"
records need not be included for new nodes the user wishes to patch into the
network.

Samuao Commands
The user can specify which nodesiare to have there values displayed after each

A .V- simulation step:
w node I -node2 node3 ...

Watch nodel and node3, stop watching node2. At the end of a
simulation step, each watched node will displayed like so:

nodel=O node3=X ...
To remove a node from the watched list, preface its name with a
'-' in a 'w" command.

W label node 1 node2 ... noden
Watch bit vector. ,The values of nodes nodel. noden will
displayed as a bit vector:

label=01000 20
where the first 0 is the value of nodel, the first 1 the value of
node2, etc. The number displayed to right is the value of the bit
vector interpreted as a binary number; this is omitted if the vector
contains an X value. There is no way to unwatch a bit vector.

Before each simulation step the user can force nodes to be either high () or low
(0) inputs (an input's value cannot be changed by the simulator!):

h nodel node2..
Force each node on the argument list to be a high input, overrides
previous input commands if necessary.

I node 1 node2 ...
Like "h" except forces nodes to'be a low input.

x nodel node2 ...
Removes nodes from whatever input list they happen to be on. The
next simulation step will determine their correct value n the cir-
cult. This is the default state of most nodes. Note that this does
not force nodes to have an -X" value - it simply removes them

,e. 153

9* ,-.

. o- ,, . .9'* ,, .. .. , , , . . . - .--. ',-.-. . . ,, . . . . . - . . . .



.-.

ESIM(CAD1) UNIX Programmer's Manual ESIM (CADi )

from the input lists.
The current value of a node can be determined in several ways:

V
View. prints the values of all watched nodes and nodes on the high
and low input lists.

? nodel node2 ...
Prints a synopsis of the named nodes including their current
values and the state of all transistors that affect the value of these
nodes. This is the most common way of wondering through the net-
work in search of what went wrong...

I nodel node2 ...
For each node in the argument list, prints a list of transistors con-
trolled by that node.

'?" and "T" allow the user to go both backwards and forwards through the net-
work in search of that piece causing all the problems.

The simulator is invoked with the following commands:
s

Simulation step. Propogates new values for the inputs through the
network, returns when the network has settled. If things don't set-
tle, command will never terminate -- try the "w" and "D" com-
mands to narrow down the problem.

C

Cycle once through the clock, as define by the K command.
I

Initialize. Circuits with state are often hard to initialize because
the initial value of each node is X. To cure this problem, the I com-
mand finds each node whose value is charged-, and changes it to
charged-O, then runs a simulation step. If one iterates the I com-
mand a couple times, this often leads to a stable initialized condi-
tion (indicated when an I command takes 0 events, i.e., the circuit
is stable).
Try it -- if circuit does not become stable in 3 or 4 tries, this com-
mand is probably of no use.

Mis lianeous Commands

D
toggle debug switch. useful for debugging simulator and/or cir-
cuit. If debug switch is on, then during simulation step each time a
watched node is encounted in some event, that fact is indicated to
the user along with some event info. If a node keeps appearing in
this prinout. chances are that its value is oscillating. Vice versa, if
your circuit never settles (ie., it oscillates) , you can use the "D"
and "w" commands to find the node(s) that are causing the prob-
lem.

> filename
write current state of each n9de into specified file. useful for make
a break point in your simulation run. Only stores values so isn't
really useful to "dump" a run for later use -- see "<" command.

< filename.
rad from sp'4cified file, reinitializing the value of each iiodp vz
directed. Note that network must already exist and be identical to
the network used to create the dump file with the ">" command

154



ESIM( CAD1) UNIX Programmer's Manual ESIM ( CADi )

These state saving commands are really provided so that compli-
cated initializing sequences need only be simulated once.

invokes network processor that finds all subnets corresponding to
simple logic gates and converts them into form that allows faster
simulation. Often it does the right thing, leading to a 25% to 50%
reduction is the time for a single step. [We know of one case where
the transformation was not transparent, so caveat simulee...]

X...
call extension command - provides for user extensions to simula-
tor.

q
exit to system.

Local Extensions
Vnode vector

Define a vector of inputs for the node. The first element is initially
set as the input for node. Set the next element of the vector as the
input after a cy-4e.

R n

Run the simulator through n cycles. If n is not present make the
run as long as the longest vector. All watch nodes are reported
back as vectors.

N
Clear all previously defined input vectors.

K nodel vector1 node2 vector2 ... nodeN vectorN
Define the clock. Each cycle, nodes 1 through N must run through
their respective vectors.

sALSO
extr(cadl),sim(cadl)

BUGS

155

. - -. *



CXTRACT(CADI) UNIX Programmer's Manual EXTRACT(CAD1)

NAM
extract - circuit extractor for a IF file

SYNOPUS
.ztract~flie

Eztract is the first of a sequence of programs for setting up your design for
functional simulation. The first step is to begin with a .cif file. This normally
means executing the following clL command:

il -Cflie.cU
Then execute eztrct and wait up to 2 hours!

extractft e
The next step is to plot the extracted circuit using node-plot. The last step is to
create a file which assigns names to important nodes; this will include vdd and
gnd, and probably phil and phi2. For example,
-- fie.sym-
178 vdd
84 gnd
17 phil
414 phi2
15 sO
13 91
11 s2
9 oO
7 ol
5 o2
-- end of sample----
Then create the simulation file (.sim) using sivn. The extracted circuit is now
ready for a static test with stat to determine ratio errors and power-ground
shorts and an actual simulation with es-im.

/vlsi/lib/local /extr/extract
/vlsi/lib/local /extr/toced/vlsi/lib/local /extr/expand

/vlsi/lib/local/extr/bsort
/vlsi/lib/local/extr/bbound

..- ALSO

node-plot(cadl), sim(cadl)
BUGS

Generates several. def files which are not normally needed by the user.

15"

4" "4 . F ' ," " , W . , 'v . . ,. . . . . .*. . . . . .



MERGE(CAD1) UNIX Programmer's Manual MERGE(CAD1)

41 merge - merge two or more cifout files
* SYNOPUS

merge < ffl 2 f .efle3... (-o outflhe]

Merge does a merge of sorted cifout files or sorted and unsorted cifout files. The
Input must be binary data and the output is binary data to the standard output.
If the -o option is used, the output is sent to the stated file. This file cannot have
the same name as any of the input files.

I/vlsi/lib/local/merge

=ALSO
cifout(cad5), rsort(cadl)

UGS

157

.5%

d-:a 15

, :.:.'..f-. :,-,,.-' , .,.-. , -' ,......' -..,. -. ....... .. S. .. . .* - , .. . ... .-S



NODE-PLOT(CAD1) UNIX Programmer's Manual NODE-PLOT(CADi) "

node-plot - generate plot of extracted circuit

SrNapms

NodepLot generates a plot of an extracted circuit. The plot is automatically bro-
ken into strips of 240 lambda width and has the node numbers that are associ-
ated with the various node locations. The first part of the file name is used for
the input. For example, to plot an extracted circuit which has a .rec file labeled
test. ec, enter node-got test and the terminal will indicate the necessary
response for the plot.

/vlsi/lib/local/extr/node-plot
/vis/lib/local/extr/bbound

extract(cadl)

The scale factor cannot be adjusted by the user. The stipple pattern is different
from the one used by the cU plot routine.

156

4i

158 :



PLAGEN (CAD) UNDX Programmer's Manual PLAGEN (CAD 1)

NAM
plagen - layout a PIA in CIF from an input-output specification

plagen [options] input pla.cif

Rlagmn is a program that converts an input-output specification for a PLA into a
CIF representation of the PLA. The CIF representation uses the XEROX cell
library, and thus has a high probability of working. Since many people require
different inputs and outputs, pfage only generates the AND-OR plane with asso-
ciated pullups.

The options for plagen are:

-o Do not include pullups on the OR plane. This allows you to take outputs
from the top of the OR plane.

J Set frequency of grounds to #. The default is one ground per 32 product
terms.

-4 The inputs are interleaved.

-C The inputs are complemented.

To use plagen you must first create an input file that specifies the inputs and
outputs of the PIA. The format of the input file is:

fLaUnputs, f.DL.terms, #_o outputs, symboL4, lambda

xM yyy

nXX3 yyy ,
where #_DLinputs is the number of inputs to the PLA

#,oL.terrns is the number of terms in the PLA

"oLoutputs is the number of outputs that the PLA has (If zero only the AND
plane will be generated)

symboL# is the number that the CIF symbol will have. This is how different PLA
cells can be distinguished. You must be careful when you select the symbol
number. For instance, the XEROX library consumes CIF numbers I to 99 and
other special cells developed at Stanford use the numbers 100 to 899. Since CLL
generates CIF symbols with numbers 1000 and greater, I suggest that you use
CIF symbol numbers in the range 900 to 999.

lambda should be the current value of lambda in micrometers.

The actual programming information is encoded in #..ofterms lines of input.
Each term of the PIA has #_of-inputs characters that represent the input con-
nection information (the x's), a single space, and #_ofDutputs characters that
represent the connections to the outputs. For the inputs connections, there are
three possibilities:
1) this term does not depend on this input: use a "-"

2) this term is only true if the input is true: "1"
3) this term is only true if the input is false: "0"

159



PLAGEN (CADi) UNIX Programmer's Manual PLAGEN ( CADi)

For the outputs there are only two possibilities:
1) this output is affected by this term: "-"
2) this output is not affected by this term: "0"
For example, suppose we wish to create a 4 input, 3 output, 3 term PLA with
defining equations:

z = A'BC + BC
W = ABC + ABCD

- z3 = ABCD + BC
It we choose symbol number 901 and lambda of 2.5, then the input fie is:

-4,3,3.901.2.5

010--0
-11--0-
11110-
The output of plagen is a CIF file, and a line of information about the PLA cell.
,,Wgn .ends to the terminal a line that is an external definition of the PLA for
use with CLL Of course, you may need to alter the name of the CLL symbol that
corresponds to the PLA cell.

: - /vlsi/lib/local/plagen
SWALSO

cU(cadl),plague(cadl)

BUGS
Not much error checking on the input format.

-,4.

.0

040%.1



PLAGUE( CAD) UNIX Programmer's Manual PLAGUE ( CADi)

NAM
plague - PLA g(enerator) u(sing) e(quations)

' SYNOPMS
- plague <input I plagen >pla.cif

This is a program for producing a file suitable for the program "plagen" from
logic equations. The file fed to it should first contain a CIF number for the whole
symbol written "CIF# x;" (defaults to 900 if left out), then a list of input pins of
the form "in<puts>- al a2 ...;" where "puts" is optional, a list of output pins
"out<puts>: ol o2 ...;", and a series of equations of the form "outpin =
inpinl&inpin2'&x + etc';". The pin names can be any combinations of letters,
digits, ., and - but must start with a letter. Logical inversion is expressed by a '
after the pin name. The logical AND operator is '&', and the logical OR '+'. The
equations are assumed to be in sum of products form. The order of the names

-: in the input and output lists determines where they are on the PLA.
Spaces,tabs, and newlines are ignored in the equations, and they and the lists
are terminated by semicolons.
The program does no minimization, but does ignore duplicate product terms.
The output for the plagen program comes out on the standard output. A
schematic version showing the pin names is put into pla.schem.

-pEMlIO
"' Here is what the original input looks like:

"* CIF# 950;
outputs: SI S2 S3 a4' inc;
in: random input signal RESET' s3 s2 sl;
inc = random&input;
a4' = s3 + signal + random&input;
S3 = s2&sl + RESET; S1 = signal - sl'&s2'&s3'; 52 = random&s3' + si;

Note that RESET' was used in true and inverted form.
This is what goes to plagen:

A: 7,.85,950,2.5
11-- 000-
--- 1- 000-0
-1--- -00-0
-- 11 00-00
-0- 00-00
-000 -0000
1-0-0-000

,.- --- 1 0-000

. Here is pla.schem:

'.5- CIF number 950
AND plane
1-...- random
1-----.input
-1--- signal
-- 0--- RESET'

.-...... '*51.81.5 * .*'.

"'" " •.".. ."." . ..". .". . . ...." ,"," ' .' "" -" ' ' . ". *.. -. lA "* . -"



PLAGUE ( CAD1) UNIX Programmer's Manual PLAGUE ( CAD1 )

-1--00- s3
-1-0-- s2
-1-0-1 sl
OR plane
00-00-00 S1

. o000000- S2
000-00o S3
-00000 a4'
-0000000inc

A "1' in the AND plane means that this term is true only if the input is true, a "0"
that this term is true only if the input is false, and a "-" is a don't care. In the
OR plane, a "-" means the output is affected by this term, and a "0" that it is
unaffected.

/vlsi /lib/local/plague
E ALSO

plagen(cadl)

Limited to 40 input. 40 output and 150 product terms. Pin names are limted tc
14 characters.

162

,...,., .,. .... . .. .. . .- . . . . . . . . . - , . . .. .. , ,- :,. : . .



RPLOT( CADi) UNIX Programmer's Manual RPLOT (CAD:)

rplot - converts a scaled, sorted cifout fie to raster format and plots it

SYNOPMS
rplot [options]...file...

KS
RpWot takes rectangles as input and creates a raster file output. Input is on
standard input and output is to the Versatec plotter. The data must be sorted
by x-coordinate.
The processing can be modified by the following switches:
-b Produce a banner at the beginning of the plot.
-d Scale the output for 8.5 X 11 inch paper (document form).

-Sx.y Plot a grid whose x interval is z lambda and whose y interval is y lambda.

-i# Use a scale factor of # lambdas per inch.

.-ni Cause the named layer, 1, to be omitted from the plot. The layer can be
one or more of: c. d. g. i. m. p.

-r Produce a report document plot with room for binding.

-8 Send output to standard output.
.': -- 1. #2

Set the minimum x to be plotted as #1 lambda and the maximum as #2
lambda.

-Y 1 .# 2

Set the minimum y to be plotted as #1 lambda and the maximum as #2
lambda.

If no indications of the area to plot are given, rplot will scale the plot to best fit
the Versatec width (11 inches).

Ivlsi/lb /local /rplot

* SEE ALSO
cifout(cad5), window(cad i), rsort(cad 1)

BUGS
Rplot does not use the standard queue for the Versatec, therefore, the plotter
must be free prior to initiating a plot. "Plotter busy" messages are generally
received if the plotter is off-line or busy.

16-

163

. . ,



RSORT ( CAD 1) UNIX Programmer's Manual RSORT ( CAD":)

NAM
rsort - sort cifout files

5YNOPMS
rurt [infle] -o outfile] [-x] [4]

DE~RMFION
Rsoft is a filter that sorts a cifout file. Stdin and stdout are the default input
and output files. If the inle file name is specified, then the input is obtained
from that file. The -o option indicates that the following argument is the name
to be used for the output file.
The -x -y and - options specify which field of the data to sort on: the X coordi-
nates, Y coordinat-s, or layer. The values are sorted into increasing order
(minimum value first). The default is to sort by X coordinate which is needed by
the rplot program. Only one option can be specified. Generally, the -y and -
options are used to completely sort a file to compare it to another file. The sort
algorithm used is stable. Hence, two files that only differ because of line order-
ing will be identical after a full sort by layer, then Y, and then X coordinates. An
example would be:

rsort test.sco -I rsort -y rsort -o test.sco.

/visi/lib /local /rsort
-I ALSO

cifout(cad5), rplot(cadl), window(cadl)
BUGS

164

, . o + ° . ,. •



SIM ( CAD1) UNIX Programmer's Manual SIM ( CAD:)

NAM
aim - create a sim file for simulation with STAT, ESIM, or TSIM

SYNOPMS.a' inatle
EbPflON

Sim produces a simulation file (.sim) to be used in circuit simulation with the
static checker (stat) or the event driven switch level simulator (es-im). The
input file name must have .sym, node, and. cap files associated with it. The .syrm
file must have vdd and gnd nodes defined as a minimum. For example, to gen-
erate a .sim file for an extracted circuit with files of test.syrm, test.node, and
test.cup, fIrst define the vdd and gT-, nodes (as a minimum) in test.syrra. and then
enter sim test. The result will be test.sim.

/vlsi/lib/local/extr/sirn
/visi/lib/local/extr/gate 1

a--'Z ALSO
extract(cadl), stat(cadl), esim(cadl)

BUGS

-. 18

.°a.

165

-, ., .' ,, -.. . ." ... ., . - , .. , , ' - - ... -.....-.-.-... . . ... . - .- • . -.- .- - '' . . ' a. -. o . - . . •



* . . . .T. . .. . ...° ... . . .-. -.- -". = : - : . - • " - - . , . - . _ ' - :" " " -

STAT( CAD1) UNIX Programmer's Manual STAT( CAD1)

NAM
stat - the static checker

STNOPMS
stat file.sir- [number][>ile.stat]

rhC WPION
Stat performs a static (dc) analysis of fil.si produced by eztract followed by
stL.. ANmber is the assumed number of threshold drops on the input pads. It is
an optional input parameter with a default of 0.

Stat attempts to understand how transistors and nodes are used in the circuit.
It summarizes this understanding in its output files. Two outputs are generated
by stat. The standard error output (normally to the terminal) contains mainly
counts of various items (node types, transistor types, etc.). The standard out-
put (also to the terminal unless re-directed with >file.stat) contains detailed
information about each potential error.

(1) A report of the number of nodes and transistors in the circuit.

This takes the form:

Inodes. #enhancement, #depletion. intrinsic, #duplicates

Itrinsic transistors can be ignored since the current process does not
build them. A duplicate transistor is a single logical transistor laid out
physically as two or more transistors in parallel.

(2) Transistor classifications:
[de] gate source drain
(d=depletion, e=enhancement)

dAAvdd simple pullup
dABvdd part of a superbuffer
d A B C ion-implant transistor
e ABC typical transistor
e gad A gnd lightning arrestor
eABgnd puildown
eABv d unknown pullup

(3) Input node count.
Any node N which contains a transistor of the form:

e gad N gnd where length=2, width>=40

is considered to be an input node.

(4) Bootstrap structure count.
The following is an example of a bootstrap structure:

dABB bootstrap capacitor

(5) Threshold drops on nodes.
Starting with the given inpuL threshold drops (with vdd=O and
gnd=unknown), the information is propagated through transistors whose
gate and source threshold drops are known, and drain unknown. Drain

-166



STAT(CAD1) UNIX Programmer's Manual STAT( CAD 1)

node threshold drops are then calculated according to one of the follow-
ing formulas:

depletion: drain=max(gate-3,source)
enhan ement: drain=max(gate+ 1. source)

(8) Pullup node count.
Pullup nodes are classified into simple pullups, unknown pullups, and

--" multiply pulled-up depending on the type of transistor(s) connected to
the particular node in question. In the following structures:

dAB vdd unknown depletion pullup transistor
e A B vdd unknown enhancement pullup transistor

node B is marked as an unknown pullup node until a function has been
found for it (such as part of a superbuffer). Unknown pullups are not
necessary errors.

(7) Output node count.
Any node N which contains a transistor of the forms:

a B N vdd where length=2 or 3, width>-280 large pullup
or
* AN gad where length-2 or 3, width>=280 large puildown

is considered to be an output up or down node.

(8) Pulldown transistor count.
A pulldown transistor is one that connects a strictly pulled-down node A
to another node B. If node B is not pulled-up, then it is also strictly
pulled-down, and can be used in finding other pulldown transistors.

(9) Pass transistor count.

(10) Logic gate count.
Where possible, logic gates are derived from transistor structures. Logic
gates are: inverters, nors, and complicated gates (nand, xor, etc).

(11) Superbuffer count.

(12) Ratio check and count.
All nodes that are simply pulled-up and connect to transistor gates are
checked for the proper pu/pd ratio. Puldown transistors with non-zero
threshold drops on their gates are taken into account by making their
lengths longer. Ratios that are < 4 or >= 5 are reported. The program
cannot handle nodes with multiple simple pullups. When such a node is
encountered, the message: Program error in ratio is displayed.

(13) Transistor error count.
Unknown depletion pullup transistors whose function cannot be deter-
mined are reported as:

unkmown pullup transistors.

Enhancement transistors whose gate is vdd or gnd, whose source Ls 'dd
and drain grid (or vice versa), whose source and drain are the same, or

187

I N



STAT( CADI) UNIX Programmer's Manual STAT( CADi)

whose gate is the same as its source or drain are reported as:

strange transistors.

Depletion pulldown transistors are reported as:

depletion mode puildowna.

(14) Node propagation error count.
Four bits are associated with each node: 0, 1. 1. 0.
Grd has the 0 bit set.
Vddhas the I bit set.
All inputs have the I bit set.
All outputs have the O bit set.
The program propagates these bits through the circuit. In the end,
nodes that do not have one or more of these bits set are counted and
reported.

MOUT WiBSSAGS
Most messages describe either a node or a transistor.
The standard format for a node message is:

message: node (zpos,%pos)

The standard format for a transistor message is:

message: [do] gate source drain (z os,ypos)

In the case of a pu/pd ratio message, the format is slightly more complicated:

r n (=,y)} <u x uw>." <g [,..;:?.] dl x dw> mj +

The message says: pu/pd ratio r is calculated for node n at position (z,y). Node
n is pulled up with a pullup transistor of length ul and width of uw. Node n is
pulled down to node m via a transistor whose gate is g, whose length is di and
width is dw, and g has one of 5 possible threshold drops [,.;:?] on it. One or
more, 8+, puildown transistors can exist in the pulldown path, the last of which
must have m=gnd (obviou3ly).

The various threshold drops are denoted by:

symbol drop effective pd resistance
1. . 0.0 xl.0
2. 0.5 x1.5
3. * 1.0 x2.0
4. 1.5 x2.5
5. ? unknown x infinity

Threshold drop changes the effective resistance of a pulldown transistor used in
ratio calculation.

U,.M

ivlsi/lib /lcii1/extr/sLa6

,° lea



*STAT( CADl) UNIX Programmer's Man1ual STAT(CAD1)

30 A"O
extract(cadl),sim(cad l)

Only if you don't believe what the program tells you.
It Is recommended that vdd, gnd, phil, andpl be defined in the flie.sim before
subjecting it to abuse by stat.

.169

4.°

.- g

.4-. -J Jmm,' ,,



TPLOT (CAD 1) UNIX Programmer's Manual TPLOT ( CAD 1)

NAM
tplot - plots a cifout file on a GIGI terminal

srwa ss
tplat (options] ... file.,..

7Not is a program that can be run from a GIGI terminal. It will produce a color
plot of a cifout file. The layers plotted and their respective colors and dot pat-
terns are
metal blue
diffusion green
polysilicon red ..........
implant yellow .......
contact magenta ...
glass/DRC error white
unknown cyan ??

The processing can be modified by the following switches:

-i# Use a scale factor of # lambdas per inch.

-al Causes the named layer, 1, to be omitted from the plot. The layer can be
one or more of: c, d g. i. m. p.

Divides the chip into #2 strips and plots the #1 'th strip.

Sets the minimum x to be plotted as #1 lambda and the maximum as #2
lambda.

Sets the minimum y to be plotted as #1 lambda and the maximum as #2
lambda.

If no indications of area to plot are given, tplot will scale the plot to best fit the
terminal screen.
After the plot is complete, the terminal will go into the "position mode." In this
mode, the terminal "arrow" keys can be used to move the graphics cursor to any
desired position on the screen. If the SHIFT key is held down in conjunction with
an "arrow" key, the cursor will move ten units at a time. Once the cursor has
been moved to the desired position. a 'p' will cause the terminal to di:.play the
cursor position in lambdas. A 'q' will erase the screen and terminate the pro-
gram.

/vlsi/lib/local/tplot
SE ALSO

cifout(cad5)
BUGS

170

_N- .r



-. 4

• UNCONVERI ( CAD1 ) UNIX Programmer's Manual UNCONVERT(CAD1)

NAME
unconvert - converts an ASCII cifout file to binary form

uconvert < jTle

Uhrovwert takes an ASCII cifout file from standard input and converts it to a
binary format sent to standard output.

/vlsi/lib/local/unconvert

* EALSO
cifout(cad5), convert(cadl)

BU GS

1,

.'.
qi

,4.

4 : ' ." ." " , . : ' . - ' " - " - . " ." --- ' " , '" " . . . .- ' .- . . . .-- .-



WINDOW (CAD1) UNIX Programmer's Manual WINDOW ( CAD1)

window window a cifout file

SYNOS
window [-x#1.#2] [-yIl.#2] [-1#] [-s,.l] [-ni]

W&Ldow is a filter that converts a cifout file to raster coordinates preparatory to
conversion to raster format. WULdW can convert any selected portion of the IC
and also scale the resulting plot. The processing can be modified by the follow-
Ing switches:

set the minimum x to be plotted as #1, max x as #2 (in lambdas, either
#1 or #2 can be omitted)

set minimum y as #1, maximum y as #2 (either #1 or #2 can be omitted)

4d sets scale factor to # lambdas per inch

-u'.m plots strip n of m strips. This allows convenient plotting of IC's that are
too large to fit onto a page. Note that n ranges from 1 to n. Strip 1 is
the first strip (lower left corner), strip 2 the second, etc.

-ni causes the named layer, I, to be omitted from the plot. The layer, 1, may
be one or more of c.dg.m.p or z.

-b Blockout. Causes the min to max x (and y) to be blocked out rather than
plotted. Creates a box on the Z layer to show where the block was.

even if the input file was sorted.

-u Unscaled. Causes the output coordinates to be unscaled to raster coor-
dinates. This allows a fle to be windowed more than once without the
coordinates getting scaled to fit the Varian every time.

-d Causes the object to be windowed to the size of a normal page for docu-
mentation (suppresses printing of comments). Will make the 10.5 inch
dimension in either the x direction or the y direction to get the biggest
possible plot.

-r Causes the object to be windowed to the size of a bound page so that it
may be bound (also suppresses printing of comments).

-gz.y Allows you to specify a grid to be displayed on the plot. This inserts

appropriate instructions into the cij'fmt file to cause rplot to plot grid
lines at a spacing of x lambda in the x direction and y lambda in the y
direction. If z or y are omitted a default value of 5 lambda is used. If no
arguments are specified, uindo&w will use the bounding box for nin/max
x/y and scale the plot to best fit the paper. The user can specify any
subset of parameters that he wishes, and undow will use the given infor-
mation in conjunction with the information in the cifout file to determine
the desired operation. For example, the command
window -i.53
would use the bounding box information to determine xmin, ymin and
ymax, but max would be set to 53 lambda.

/vlsl/llb/local/window

172
......................5-

S *'*



WINDOW(CAD1) UNIX Programmer's Manual WINDOW(CAD1)

ALSO
citout(cad5), rsort(cadl), rplot(cadl)

BUGS
Not too much error checking for ridiculous arguments or duplicate arguments.

17.

17



'a *a

.........

er1

- .. 
.........

mewm

-pa

a-.,I- L/P(Y nPZ ATR

a17



774

"4u

contact _

.........

_______ w

.. .. ... . .. . .. .. . . -... .

....... .... ... ...... .

;.' 4. 1W

pol

175



APPENDIX C

SUMMARY OF CLL COMMANDS'

COMMENTS

enclosed in /0 0/ ; commands do NOT nest.

SYMBOL DEFINITION

navme [(cif# bounds Ux,ily xlenylen)]

EXTERNAL

external name (cif# bounds llx.1y xlerLylen)

LAYER

layler;

(metal, blue, red, diffusion, diff, green,

contact, cut, black, implant, yellow, glass,

metal2, poly2)

RECTANGLE

rect Ux,lly xlen,ylen [layer];

or
[rlx~fly xlen,ylen [Imyer];

VIA

via Ux.,ly [layer]

(poly or diffusion)

WIRE

Excerpt from Reference 5.

176

il '. : : - ' . . .- '.. .- . i- ' ,- ," . .. ' . ". - ' . .- . . -." • • . " .- t " . &,-.



wire [layer] x,y uhrelist;

or

w [layer] x,y u4,relist;

(wirelist consists of one or more of:

u#, d#° r#. 1#, wJ/# x, y#, ##. laYer)

CALL

name (llx,lly trnzsformations);

ITERATE

iterate nx,ny [xpitchlypitch]

name (lx.bly tramsformatns);

TRANSFORMATIONS

flip ud, flip Ir, flip ri

rotate 0, rotate 3. rotate 6, rotate 9, rotate 12

FUNCTIONS

dx(name) dy (name) pwidth (#ma) print (expr)

177

.......................
. . . . . . . . . ..,. - .. *.."



N I.

DEFINES

#define symnbol-name real-value

INCLUDES

#include 'fiLe-name

CONDITIONAL

#ifdef z

#endif

or

#ifndef z

#endif

CLL RESERVED WORDS

black blue bounds butt

cif contact cut d

def ault diff diffusion dx

dy external flip glass

green implant iterate I

lr metal metal2 poly

poly2 print pwidth r

rect red rI rotate

u ud via w

wire x y yellow

STANDARD FILE STRUCTURE

17B



#ifrdef MYNAME

#define MYNAME

#include " /vlsi/lib/Local/s..zt. cU"

#in.clude "a"

4"#inLclude "b"

external name(cif# bounds llx,lly xden.ylen)

*.1 #deflne x 1

#define y (a-y-93)

#deftne z 7.5

A syvnboL-nameo(

#edi

4"



APPENDIX D

DESIGN FABRICATION

The following sections provide an overview of the procedure for using the

DARPA Net to deliver a CIF file to MOSIS (Chapter 2 of this thesis) for fabrication.

A. INTRODUCTION TO THE DARPA NET

The DARPA Net is the computer link between the designer and MOSIS, where

the CIF file is verified and forwarded for fabrication. Access to this net is con-

trolled and will not be covered by this Appendix, however, once access has been

obtained, the following material will be a guide to the user.

At present, the NPS VAX computer is not capable of linking to the DARPA Net.

Until this connection is available, the user must use a remote terminal with

modem capability. The phone numbers for the Net link are:

646-3150 (300 BAUD)
646-3158 (1200 BAUD)

Both are full duplex operation. After a link has been made, the DARPA Net can

be established by pressing the terminal's CONTROL and Q keys simultaneously

(<CTRL>Q). The terminal responds when the net has been opened and waits for

* the user to open a host computer tie.

Although there are several host computers capable of accessing the DARPA

Net, the two most frequently used at NPS are ECLB and ISE. To open the con-

nection with ECLB, the user should type

@o 23<CR>

where <CR> is RETURN. To open the connection with ISIE, type

180

• .' . .



@o 1/52<CR>

In either case, the net responds to the open connection with information about

the net and then issues the system prompt

The command to log onto the net is

login usevnme pamsswrd<CR>

The computer responds with information about the account and then issues the

system prompt again. The system now accepts valid commands.

Since the DARPA Net is a shared net, the response of the computer is gen-

erally slow. Be patient and don't attempt to confuse the computer with several

commands while it is attempting to execute one. If at any time it appears that

the link has been lost or the system is "locked-up," simply terminate the modem

connection. The net closes Lhe connection after a set amount of "idle time."

To properly log off of the link, type

logout<CR>

The system responds with a message confIrming that it is closing the connec-

tion.

2. falp

To obtain a list of valid commands, type

5$ 181

-I w .5 . 5 - 5 4 - -" 5 . * . . . . . -.. . ..-- S. -. ' o 5 * '4*' • . " O ' ' - . .' " -- , ..



The net also has a HELP function which provides information and usage for par-

ticular commands. To find out what commands are supported by HELP. type

9. '

I help ?<CR>

The command

help una

gives information about the system command, name. The two commands that

will be used most by the VLSI designer are MSG and SDMISG.

3. MSfM

The manual for M9 can be obtained with the command

help mng

" (This is a long file and should be printed for user reference.) MSG will be used to

read and send mail (messages or letters) within the DARPA Net and especially to

MOSIS.

To determine if there is any mail that has not been examined, type

msg

The computer responds by indicating if any mail is stored and will give the mes-

sage ntmber and origin. It will terminate with the MM prompt of

9.-

To read a message, type

, 182



where number is the message number (or range of numbers). For example, t 52

causes message 52 to be displayed, while It 52-80 causes messages 52 through 60

to be displayed consecutively.

To send a message while in the MSG function, type

The computer responds with

To (?for help):

The address of the the user to receive the message should now be entered. For

example,

MOSIS@USC-ISII

Note that two "0" keys must be typed, while the terminal will type three of

them. After a RETURN, the system responds with

cc (? for help):
-A

A This is a request for the address of a user who is to get a copy of the message. It

is recommended that the designer put his address to get a copy of the transmit-

ted message. After entering this address, the computer responds with

Subject:

The user then enters the subject of the message. The next input requested by

the computer isEl Message (? for help):

183



The text of the message can now be typed. While entering the message text,

various editor commands are available. The commands are listed in the SNDMSG

manual but the most commonly used ones are:

<CTRL>D Retype text
'<CTRL>H Delete last character
<CTRL>U Delete present line
<CTRL>Z End of message text
<CTRL>N Abort this message

After the message has been entered and the user has indicated that the

end of the text has been reached (with <CTRL>Z), The computer will ask if the

message should be sent (S) or placed in memory (Q). If the user responds with

the message will be sent after the addresses have been confirmed.

Any additional information on the DARPA Net should be obtained from the

HELP function.

B. MOSIS

MOSIS is the link between the designer and the fabrication facilities. It pro-

vides information on the current schedule for the technologies that are being

fabricated and also information concerning updates to these technologies

(nMOS, cMOS, etc.). Although the MOSIS USER'S MANUAL [Ref. 8] provides a

complete list of procedures for the fabrication process, this Appendix highlights

the major points.

1. QflIinnfig Infnrratinn

Since MOSIS has an automatic message processing system, all correspon-

dence to it must be in standard format and identified with valid subject and

184



:',

request lines. The format of the text for messages to MOSIS is:

REQUEST: Type-of-Request
Parameter line

REQUEST: END

The allowed entries for the REQUEST and Parameter lines are given in the User's

Manual. To obtain this manual (along with other basic information), the follow-

ing message should be sent:

TO: MOSIS@©'USC-ISIF
CC: User-Address
SUBJECT: INFORMATION REQUEST

REQUEST: INFORMATION
TOPIC: USER-MANUAL
TOPIC: GENERAL
TOPIC: TOPICS

REQUEST: END
,-S

The GENERAL topic provides information on how to obtain authorization to use

MOSIS and the TOPICS topic gives information on other topics relating to the

MOSIS service.

The turn-around time for a request to MOSIS is generally less than one

hour during working hours. Once these basic information sources have been

received, the user will be able to request information on other areas (library,

schedule, etc.).

Once authorization has been obtained to use the MOSIS service, the

designer needs to initiate several messages in order to get a chip fabricated. All

of these messages are documented in the MOSIS USER'S MANUAL. However,

the messages that are absolutely required are requests for NEW PROJECT,

185



FABRICATE. and REPORT.

The NEW-PROJECT request has the form:

REQUEST: NEW-PROJECT
D-NAME: name of designer)
AFFILIATION: Navy)
ACCOUNT: (MOSIS account number)*
D-PASSWORD: (designer's password)
NET-ADDRESS: (designer's net address)
MAILING-ADDRESS: (designer's mailing address)
P-NAME: (project's name)
P-PASSWORD: (project's password)
DESCRIPTION: (short description of project)
TECHNOLOGY: (nMOScMOS,etc.)
LAMBDA: (requested lambda)
MIN-LAMBDA: (min accepted)
MAX-LAMBDA: (max accepted)
PADS: (number of pads)

REQUEST: END

Assigned by MOSIS after authorization has been granted.

MOSIS replies to this message with an approval (or disapproval) message which

gives a project number.

The FABRICATE message can be used both to submit a CIF file and request

that it be fabricated. It has the form:

REQUEST: FABRICATE
ID: Iproject # assigned by MOSIS)
P-PASSWORD: (project password)
SIZE: (length X width of project in microns)
CIF:

(insert flnal.cif here)
REQUEST: END

This is the minimum requirement for the message. Other information can be

added if the designer feels that it is necessary. For example, the lambda used

to calculate SIZE may be included. Additionally, if a check-sum was performed

on the CIF file (See the following section.), it should be included in this message

MOSIS responds to this message with a "valid CIF" (or "not valid CIF") message

186



-- ,N ' .-7

If the "not valid CIF" message is received, the designer must retransmit his

FABRICATE message.

'.5 The REPORT message should be sent after the chip has been received and

tested. This provides feedback to MOSIS for their analysis of the fabrication of

different technologies. It has the form:
..,

REQUEST: REPORT
ID: (project number)
P-PASSWORD: (project password)
REPORT: (report of performance of

fabricated project)
REQUEST: END

3.k

MOSIS provides the software for performing a "check-sum" on a CIF file

which is used to validate that file. Check-sum gives an output which is a unique

count of the input CIF fie that can be used to verify correct transmission of the

file over a data link. This software has been installed on the VAX and should be

used by the designer. If the command

ckuum fOnal.cif

is issued, the computer responds with

CIF-CHECKSUM= numberl
BYTE-COUNT= nurm'ber2

The check-sum can be included in the FABRICATE request, while the byte-count

is for the designer's information only. Upon receipt of the CIF file, MOSIS com-

putes a checksum and reports its value in the "vi lid CIF"' message. The designer

should verify that this check-sum is identical to numberl.

187

-- .. . . . . .5. -. *o * . ;.; .



.4'

APPENDIX E

FILES AND PROGRAMS FOR THESIS PROJECT

188



pial

CIF# 950;
in:AOBO AlB1 A2B2A3 B3A4 B4 A55ASB6 A7B7 A8 BBA9 B9A10 B1OAl1;
in: B811 Al12 B12 A13 B1 3 A14 B14 Al 5 BiS5 CIN;
out: G140 G130 G120 G1 10 G100 G90 G80 G70 G60 G50 G40 G30 G20 G10 GOO P150;
out: P140 P130 P120 P110 P100 P90 P60 P70 P60 P50 P40 P30 P20 P10 P00 G21;
out: Gl G01 P21 P11 P01 COUT;
G140=A14&B14;
G130=A13&B13;

-~ G120=A12&B12;
G11O=A11&Bl1:
G100=AO&B1O;
G90 =A9&B9;
G80 =AB&BB;
G70 =A7&B7;
G60 =A6&BS;
G50 =A5&B5;
G40 =A4&B4;
G30 =A3&B3;
G20 =A2&B2;
G10 =A1&B1:
GOO =AO&BO;
P150=A5'&Bl5+A15&Bl5':
P140=A14'&B14+A14&B14';
P130=A13'&B13+A13&B1 3';
P120=A12'&Bl2+AIL2&B12';
P11O=A1'&B1+A1&Bl1';
P100=A1O'&B0+AlO&BO';
P90 =A9'&B9+A9&B9';
P60 =A8'&B8+A8&B8';
P70 =A7'&B7+A7&B7';
P60 =A6'&B6i-A6&B6';
P50 =A5'&B5+A5&B5;
P40 =A4'&B4+A4&B4';
P30 =A3' &B3+A3&B3';
P20 =A2'&B2+A2&B2;:
P10 =AlV&B+A&B';
P00 =AO'&BO+AO&BO';

PLAl EQUATIONS CONTINUED ON NEXT PAGE

189



G21=Al1&B11+AlO&B1O&A 1&B 1+A0&B0&A 1&B 1'+A9&B9&A10'&B0&A1&B1'
+A9&B9&AlO&B1Q'&AI 1&Bl 1'+A9&B9&A10'&BlO&A1 1'&Bl 1+A9&B9&Al0&Bl10
&Al1 '&Bl 1-iAB&B8&A9*&B9&A1O'&B1 0&A1 1 &B1 1' +A8&BB&A9' &B9&A1 0&B1 0
&Al 1&B1 1'+AB&B8&A9'&B9&A1O'&B1O&A1 1 '&BI 1 +A8&H8&A9'&B9&A1O&B1 0'
&Al 1 '&B 1 IA8&BB&A9&B9' &A1O'&B1 &A1 1 &B 1'+AB&B8&A9&B9' &A1 &B 10'
&Al 1&B1 1'+AB&B8&A9&B9'&A1O'&B1O&A1 1 '&Hl1 +AB&B8&A9&B9'&AlO&B1 0'
&Al 1'&B 11;

Gil1 =A7&B7+A6&B6&A7 &B7+A6&B6&A7&B7 +A5&B5&A6' &B6&A7&B7 +A5&B5&A6&B6,
&A7&B7 +A5&B5&A6' &B6&A7' &B7+A5&B5&A6&B6' &A7 '&B7+A4&B4&A5 '&B5&A6'
&B6&A7&B7 +A4&B4&A5 &B5&A6&B6 &A7&B7 +A4&B4-&A5 &B5&A6 &B6&A7'
&B7+A4&B4&A5 &B5&AG&B6' &A'&B7+A4&B4&A5&B5' &A6 &B6&A7&B7' +A4
&B4&A5&B5' &A6&B6' &A7&B7 +A4&B4&A5&B5 '&AS '&B6&A7 &B7-sA4&B4&A5&B5'
&A6&B6 &A7' &B7;

G01 =A3&B3+A2&B2&A3' &B3+A2&B2&A3&B3-s-A1 &B 1&A2' &B2&A3&B3'- ±Al &B1 &A2&B2 -

&A3&B3' +A1&B1 &A2'&B2&A3'&B3+A1 &H1&Ar2&B2'&A3'&B3+AO&BO&A 1'&B 1 &A2'
&B2&A3&B3 -+A0&B0&A1 '&H 1&A2&B2' &A3&B3' +AO&BO&A1 '&B 1&A2 '&B2&A3' &B3+
AO&BO&Al &Bl1&A2&B2' &A3 &B3s-AO&BO&A1&B1 '&A2 &B2&A3&B3' -4AO&BO&A1
&B1 '&A2&B2'&A3&B3' +AO&BO&A1 &B1' &A2'&B2&A3 &H3+AO&BO&A1&Bl &A2
&B2'&A3 &B3;

P21=AB6&B8&A9'&B9&AO&B1 0'&A1 1&B1 1' -A8&BB'&A9'&B9&A1O&B1O'&A1 1&BI 1 +A8'
&B8&A9&B9'&A1 Q&B1O&Al1&B1 1+AB&BB'&A9&B9'&A1Q&B10'&A1 1&H 1 +
AB'&B8&A9'&H9&A1O'&B1O&A1 1&B1 1'+AB&B8'&A9&B9&AlO&BlQ&A1 1&B1 1
+AB'&B8&A9&B9'&A1O&B1O&A1 1&B1 1+AB&B8'&A9&B9'&AlO'&B1O&A1 1&B1 1'
+AB'&BB&Ag'&Bg&AlO&BlO'&A1 1'&B1 1+A8&BB'&A9'&B9&A1Q&B1Q'&A1 I '&
B11+AB'&B8&A9&B9'&A1O&H1O&A11'&H11+A8&BB'&A9&B9'&AI-O&BIO'&A1 1'
&Bll+AB'&B8&A9'&B9&AO'&BO&A1'&11-sA8&B8'&A9'&B9&AIO'&BlO&Al1'
&B1 1+AB'&BB&A9&B9'&A1O'&Bl0&A1 1'&B1 1+A8&B8'&A9&B9'&AlO'&BO&A1 1
&B11;

Pi1=A4 &B4&A5'&B5&A6&B6' &A7&B7' +A4&B4' &A5' &B5&A6&B6 &A7&B7 '-A4 &B4 &A5&
B5'&A6&B6 &A7&B7' -+A4&B4&A5&B5' &A6&B6' &A7&B7' +A4' &B4&A5' &B5&A6,
&B6&A7&B7 +A4&B4 &A5 &B5&A6*&B6&A7&B7' -+A4' &B4&A5&B5 &A6' &B6&A7
&B7 +A4&B4'&A5&B5' &A6 &B6&A7&B7' +A4' &B4&A5 &B5&Ak6&B6' &A7' &B7 +
A4&B4' &A5 &B5&A6&B6' &A7' &B7 -IA4 &B4&A5&B5'&A6&B6' &A7' &B7-A4&B4'
&A5&B5' &A6&B6 &A7' &B7+A4' &B4&A5'&B5&A6 &B6&A7 &B7 -+A4&B4 &A,5 &B5

&'&B6&A7' &B7+A4' &B4&A5&B5'&VA6 '&B6&A7' &B7+A4&B4' &A5&B5 &A6 &
B6&A7' &B7;

PO1=AO'&BO&Al &B1 &A2&B2'&A3&EI3- +AO&BO'&A1 '&BI&A2&B2'&A3&B3' -AO'&BO&A1&
B1'&A2&B2'&A3&B3 +AO&BO'&A1&B l&A2&B2'&A3&B3' -AO'&BO&A I &B I&A23
&B2&A3&B3' +A0&BO'&Al1&B1!LA2'&B2&A3&B3 +AO'&BO&A1 &Bl'&A2'&B2&A3
&B3' +AQ&BO'&A1 &B 1 &A2'&B2&A3&B3' +AO &BO&A 1 &B 1 &A2&F32'&A3 &B3 -
AO&BO&A1'&B1 &.A2&B2&A3'&B3-AO&BO&A1&Bl &A2&B2'&A3 &B3-AO&BO'
&A1&B1*&A2&B2'&A3'&B3sAO'&BO&Al &B1&A2'&B2&A3'&B3-AO&BO'&Ai' &
Bl&A2'&B2&A3'&B3+AO'&BO&AI &B" &A2'&B2&A3'&B3-+A0&BO &AI&B1 &A2'
&B2&A3' &B3.

COUT=CIN;

190



pla2

CIF# 951;
in: G140 G130 G120 G110 G100 G90 G80 G70 G60 G50 040 G30 G20 010 GOO;
in: P150 P140 P130 P120 P110 P100 P90 P80 P70 P60 P50 P40 P30 P20 P10;
in: P00 G21 Gil 001 P21 P1 1 P01 CIN;
out: OP15 0P14 0P13 OP12 OP11 OPl0O0P9 0P8 0P7 OP6 0P5 0P4 0P3 0P2 OPI;
out: OPO 0G14 0G13 0012 OG11 0010 009 0GB 007 0GB 0G5 0G4 0G3 002 001;
out: 000 C 11 C7 C3 COUT;
C3=G01+CIN&P01;
C7=Gl1+GOi&Pi1 +CIN&PO1&Pil;
CiI=G21+01 i&P21+G01&P11&P2i+CIN&POI&P11&P21;
OGO=GOO;
0G1=G10;
0G2=G20;
003=G30;
004=G40;
0G5=G50;
0G6=G60;
OG?0G70;
0G8=GB0;
0G9=G90;

* .OGiO=GlOO;

OGi 1=0110;
OG 12=0 120;
0G13=G30;
0G14=G40;
OPO=POO;
opi~p1O;
0P2=P20;
0P3=P30;
0P4=P40;
0P5=P50;
0P6=P60;
0P7=P70;
0P5=PB0;
0P9=p90;
0O~p1O;
OP 11P 10O;
OP 12P 120;
OP 13P 130;
OP 14P 140;
0P15=P 150;
COUT=CIN;

191



RD-flI36 356 VLSI (VERY LARGE SCALE INTEGRATED) DESIGN OF A 16 BIT 3/3
VERY FAST PIPELINED CARRY LOOK AHEAD ADDER(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA J R CONRRDI ET AL

UNCLASSIFIED SEP 83 F/G 9/5 NL

mEmmEmmEm
ED



MICROCOPY i RESOUTI N TES.C5

4, .

.- .- ,, . .- .. • . . . - . . , -.- . ,-*. .. - * - . - . .

1.4111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANdDARDS-1963-A

4.L



U ~ ~ ~ o7 V jw I ~ '' * f u ~ ~ * ~ * -- - v

pla3

CIFOJ 952;
in: P15 P14 P13 P1 P1 P1OP9 P8 P7PSP5P4P3 P2 PiPO;
inG14 G13 G12 Gl1 G1OG9 G8 G7 GOG5 G4G3 G2 GGO C1 C7 CCIN;
Out: COUT OCO OCI 0C2 0C3 0C4 OC5 OCS OC? 0C8 0C9 OC1O OCli 10C12 OCiS;

* out: 0C14 OPO OPJ 0P2 0P3 0p4 0P5 OPB OP? 0Pe 0p9 oplo Opli 0P12;
out: 0P13 0P14 0P15;
COUT=CNii OCO=GO+CIN&PO;
OCi =01+GO&Pl+C]N&PO&Pl;
0c2=oz+G&P2+ao&pl&p2+CN&po&p1 &p2;
0C3=C3;
0C4=G4+C3&P4;
OC5=G54G4&P5+C3&p4&p5:
OCS=G6+5&PS+4&p5&p6+C3&P4&P5&P8;
OC7=C7;
OCBSG6+C7&PB;
0C9=G9+08&PG+C?&PB&P9;
OC 1O=GlO+G9&plO+GS&Pg&PlO+C7&P8&P9&P1 0;

OC12=Gl2+Cl W&12;
OC13=Gl3+G12&Pl3+Cl 1&Pl2&Pl3;
0C14=G14+G13&Pl4#Gl2&Pl3&P14+C1 1&P12&Pl3&Pl4;
OPO=PO;
OP! Pl;
0P2=P2;
0P3=P3;
0P4=P4;
0P5=P5;
OPG=P;
0P7=P?;

0P9=P9;

OP1 1=P1 1;
OP12=Pl2;
0P13=Pl3;
0P14=P14;
0P15=P15;



pla4

CI7# 953;
im P15 P14 P13 P12 P1p1o P9 POOP7POOP5P4 P3 P2PO 1POO;
Wu C14 C13 C12 Cll CIO Cog COB CO? COB C05 C04 C03 C02 C01 COO CIN;
out: 5031 S 833S455575 S 310 511 3l 12 S13 514 S15;
SO=CI*&POO+CNiePOO;
s1=COO'&POlCOO&PO1,;
S2=C01'&P02+CO1&P02';
S3=COZ'&P03.Co2&P03,
S4-=C03'&P04+COS&P04'
35-CO4'&PO5+C04&P05;-
5=C5,&P6.COS&P06'
S7=C06&P07+C06&P07r
58=CT&P8+CO&POW';
S9-C6&P9+COB&P09';

* S1O=CO9'&PlO+CO9&P10;
s311C0'&Pl+C1O&P1 1';
S12=C1 1 '&P12.Cl 1&P12';
S13=C2&P3+Cl2&P13!;
S14=C3&P4+C1S&Pl4';
S15=C14&Pl5.C14&P1S-;

198

-~~~S~ . .***~ .* .--- . . . .*.



utage 1. cl

1 1.inlude cell library/
2 *include '/vlui/lib/1oca1/Lsxt-cU"
3 /'*dfn. plal cif fle/
4 external plal(cif 950 bounds -15.0 868.1151)

*5 /Oplac plal0/
a utage1Ij
7?
6 plal1(0, 123);
9 iterate 33.1

10 Mterbwer(1658);
I1I iterate 33.1
12 PlaClockin(15.0);
13 iterate 19.1
14 PlaClock~ut (558,70);
15

194



staig.2.cU

/*'Include cell library 0/
# include '/vIul/lib/local/u..axt~cli
/0 define pla2 cif Ale 0/
external pla2(clf 951 bounds -15,0 924.352)
/0 piaeepla 21/

p1.2(0.15);
Iterate 18,1

PlaPuliup (638.4 rotate 9);
iterate 38,1

Afterburner (10,381 rotate 8);
iterate 38.1

PlaClockIn (11,428 rotate 6);
iterate 18.1

Pla~lockOut (838.359 rotate 8);

195

* -b. - .%



stage3.cU

/0 include cel library 0/
i Include "/vlsl/lib/llocal/s.sxt.clU'
/0 define pla3 c file 0/
externa pla3(cff 952 bounds -15.0 852,484)
I0 Place plaS 0/

plaB(O. 123);
iterate 35,1

Afterburner(16,58);
iterate 35, 1

PlaClockln (15,0);
iterate 16.1

PlaClockOut (590.579 rotate 6);
iterate 16,1

PlaPuliup (590.112 rotate 9);

196

Al



xtage4.cll

/0 include cell library 0/
# include "/vWl/lib/local/s-ext.cll"
/0 define pla4 cif file 0/
external pla4(clf 963 bounds -15,0 876.264)
/0 place pIa40/
mtage4)

I
pla4(o.117 rotate 6);
iterate 32.1

Aterburner(154,58);
iterate 32,1

PtaClockin(153,0):
iterate 8.1

PlaClockOut(8.377 rotate 6);
iterate 8,1

PhhauIup (8,110 rotate 9);

197



tage5.ell

/1 this stage will develope the input-output pads /

/0 and will be combined with stage" 1 thru 4 0I
10 Include cell library 0/
include "/vslt/lib/Iocal/.xt liW'

/ place itput/oUtput pads 0/

/0 lower edge pads 0/
iterate 14.1 150.0

NJnB (225.0);
/ left edge pads 0/
terate 1.14 0.150

Nlns (0.225 rotate 3);
/* top ed pads /
iterate 7.1 150.0

Nlne (25.2508 rotate 6):
iterate 7.1 150.0

NOiM (1275.2W5 rotate 6):
/0 riht edge pads 0/
iterate 1.9 0.150

NOutS (2855,975 rotate9)
NVdd (420.825 rotate 9;
NGnd (2394.6?5 rotate 9);

19

m >Y:z#:K.. -2~.:~



tot. ell

1 /"Include cell library*/
2 Include "/vIsi/Iib/locl/a..xt.clr"
8 Include "StAge l.01"
4 Include "utage.ell"
5 Include ,se23.cll*"
6 Include "utage4.cW"
7 Include "stage5.cl"
8 P Include "designer.cll"
9 memo(

10 1
11 tage 1(340,920);
12 stage82.240);
1s stage 1270,1160);
14 stage4( 1454.2000);
15 0tao(0.0);
1 /0 plal out to pla2 in/
17 wire poly 809.900 y 95 metal v 3y 730 diff y 720;
18 W poly 907.990 y 985 metal w 3 y 730 dLff y 724 x 915 y 720;
19 wire poly 915.,90 y 985 metal w 3 y730x 931 diffy 720;

go wire paly 023.90 y9685mtalw 3 y737 x947 y730 dify 720;
21 wn poly0.90.Uy 985metal w3 y744 x 63 y730dffy 72;
22 wire paly9.O0 y 98 metal w 3 y751 x 979 y 730 diffy 720;
23 wlre poly 947.990 y 985 metal w 3 y 758 x 995 y 730 diff y 720;
24 Wrepaly55,99 y 95metalw3 y 7xlOll y73oduy20:
go wire poly 2S O y O5 metal w 3y772 1027 y730 dffy720;
26 wire paly 971.990 y 985 metal w 3 y 779 x 1043 y 730 diff y 720;
27 wire poly W7,990 y965 metal w 3y786 x1059 y30 diffy 720;
28 ire ply 967,990 y 985 metal w 3y 793 x 10757730 diffy 720;
29 wire poly 995.990 y 965 metal w 3 y 800 x 1091 y 730 dift y 720;
30 wirepoly 1003.990 y 98 metal w 3 y 807 x 1107 y 730 dlff y 720;
31 wire poly 1011.990 y 98 metal w 3 y 814 x 1123 y 730 dlff y 720;
32 wire poly 1019,990 y 905 metal w 3 y 821 x 1139 y 730 dtff y 720;
33 wrepoly 1027,990y98mtalw3yB28xl115y730diffy720;
34 wire poly 1035.990 y 9685 metal w 3yB35 x 1171 y730 diffy 720;
38 wire poly 1043,990 y 968 metal w 3y 84 x 1187 y 730 duff y 720;
36 wire ply 101,y95metalw3y49x 1203 y30dif y 720;
38 wire poly 105.990 y 985 metal w 3 y 8S x 1218 y 730 diff y 720;
sovmpl 07,0 6 ea w 3yMx125y70dfy70-

39 wire poy 1075.90 y2metalw3y870x1251y730dffy72;
40 wire poly 1063990y98metalw3y877x 1267y 730 diff y 720;
41 wire poly 1091.09 y 968 metal w 3 y 884 x 1283 y 730 diff y 720;
42 wirepoly 109.900y94metalw 3y891 x 1299y730dff y720;
43 wir poly 1107.90 y metalw3y x 1315y 730 diff y 720;
44 wft poly111.My 985metal w 3 y905 x 1331 y 30 diff y 720;
45 wire poly 11U990 y 986 metal w 3 y 92 x 1347 y 730 diff y 720;
46 vim Polyl131 M yO9smetalw3y 9x33y730duy720;
47 wire poly 1139:90 y 9 metal w3y25x379y 730dffy720;
48 wirepoy 1147My 98metal w 3 y 933 x 1395 y 730 diff y 720;
49 wire poly 1155.M y 9 5 metal w 3 y 940 x 14'' y 30 diffy 720;
50 wire poy 1163,990 y 9865 metal w 3 y 947 x 147 y 730 dMY y 720;
51 wire poly 1171,990 y 985 metal w 3 y 954 x 1443 y 730 di y 720;
52 wIre poly 1179,9B0y 985 metal w 3 y 961 x 1459y 730 dtff y 720;

t09

l- i ~rv -, ,, : .,.... .:, :.- , .. . . .. -. , .-.- . .. . ..... . . ... . . -. . . . -.. , . .



53 wire Ipoy 1187.990 y 966 metal w 3 y 968 x 1475 y 730 diff y 720;
54 wire poly 119.990 y 985 metal w 3 y 975 x 1491 y 730 diff y 720;
55 /0pIa2 ot to pla3 in 0/
56 wire poly 1797.652 y 65? metal w 3 y 1120 x 1839 y 1155 dyff y 1160;
57 wire poly 1789.652 y 65? metal w 3 y 1126 x 1823 y 1155 diff y 1160;
58 mire poly 1781.6M y65? metal w3y 1132 x187 y 115dffy 16;
59 wirepoly1773.652 y657 metal w 3y138x791 y 5dff y 1160;
0 wire poly 1765.852 y 657 metal w 3 y 1144x 1775y 1155 diff y 1160;

61 wire poIy757.62y 657metalw3y 1150x 1759y l155diyy 1160;
as wire poy 174,8W y 657 metal w3y 1150x1743 y1155dUfy1160;
63 wire poly 1741,652 y 657 metal w 3 y 1144 x 1727 y 1155 diff y 1160;
84 wirepoly 1733.M2y657metalw3y 1138x 1711 y1155 dify1160;
85 'Winpoly1725,6W y 657 metal w3 y 1132 x 1695 y 1diff y16;
se wire poly 1717.652 y 657 metal w 3 y 1126 x 1679 y 1155 iff y 1160;
67 trei poly 1709,652 y 657 metal w 3 y 1120 x 1663 y 1155 diffy 1160;
88 wirepoly 1701,652y657metalw3y ll14x 1647y 1155 diffy 1160;
89 wire poly 1693,652 y 657 metal w 3 y 1108 x 1631 y 1155 diff y 1160;
70 wirepoy165,652 y 57 metal w 3 y 1102x 1615y 1155ffy 1160;
71 wrepoly 1677.82 y 657 metal w3 y 1096 x 1599 y 1155diff y1;
72 wire poly 1669.652 y 657 metal w 3 y 1090x 1583y 1155 diffy 1160;
73 wi poly 161.52 y 657 metal v 3 y 1084 x 1567 y 1155 diffy 1160;
74 wire.poly 1M.652y657metalw3y 1078x 1551 y155diff y 1160;
75 wtre poly 1645.6 y 657 metal w 3 y 1072x 1535y 1155 diff y 110;
76 wire poly 1637,652 y 657 metal w 3 y 1066xl1l9y 1155 diffy 1160;
77 wire poly 1629852 y 657 metal w 3 y 1060 x 1503 y 1155 diff y 1160;
78 wire poly 1621.652 y 657 metal w 3 y 1054x 1487y 1155 diffy 1160;
79 wirepoly1613,652y657metalw3y 1048x 1471 l155diffy 1160;
80 wire poly 1805.852 y 857 metal w 3 y 1042 x 1455 y 1155 diffy 1160
61 wire poly 1597.652 y 657 metal w 3 y 1036 x 1439 y 1155 diff y 1160;
82 wire poly 1589.652 y 657 metal w 3 y 1030 x 1423 y 1155 liff y 1160;
83 wire poly 1581.652 y 657 metal w 3 y 1024 x 1407 y 1155 diff y 1160;
84 wire poly 1573.652 y 657 metal w 3 y 1018 x 1391 y 1155 diffy 1160;
85 wire poly165.52 y 57metalw 3 y1012x1375 y 1155 diffy 1160;
6 Wirepoly 1557.652 y 657 metal w 3 y 1006 x 1359 y 1155 diff y 1160;
87 wire poly 1549.652 y 657 metal w 3 y 1000 x 1343 y 1155 diff y 1160;
88 wire poly 1541.652 y 657 metal w 3 y 994 x 1327 y 1155 diffy 1160;
89 wire poly 1533,652 y 57 metal w 3 y 988 x 1311 y 1155 diff y 1160;
90 wire poly 1525,652 y 657 metal w 3 y 982 x 1295 y 1155 dff y 1160;
91 /0 pla3 out to pla4 in 0/
92 wire poly 2113,1796 y 1800 metal w 3 y 1995 dffy 2000;
93 wire poly 2105,1796 y 1800 metal w 3 y 1990 x 2097 y 1995 diff y 2000;
94 wire poly 2 097,1796 y 1800 metal w 3 y 1984 x 2081 y 1995 diff y 2000-
95 wre poly 2089,1796 y 1800 metal w 3 y 1978 x 2065 y 1995 dff y 2000;
96 wire poly 2 081,17 98 y 1800 metal w 3 y 1972 x 2049 y 1995 diffy 2000;
97 wire poly 2073,1796 y 1800 metal w 3 y 1968 x 2033 y 1995 dffy 2000;
98 wire poly 2 0 6 5 ,179 6 y 1800 metal w 3 y 1960 x 2017 y 1995 diffy 2000;
99 wire poly 2057.1796 y 1800 metal w 3 y 1954 x 2001 y 1995 diff y 2000;
100 wirepoly249,1796 y 1800 metaw 3 y 1948x 1985 y1995 Uy2000;
101 wipoly 2041.1796 y 1800 metal w 3 y 1942 x 1969 y1995 dlff y 2000;
102 wire poly 2033.1796 y 1800 metal w 3 y 1936 x 1953 y 1995 dtffy 2000;
103 wire poly 2025.1798 y 1800 metal w 3 y 1930 x 1937 y 1995 diffy 2000;
104 wire poly 2017,1796 y 1800 metal w 3 y 1924 x 1921 y 1995 diff y 2000;
105 wre poly 20 0 9 .1796 y 1800 metal w 3 y 1918 x 1905 y 1995 diffy 2000;
106 wire poly 20 0 1,17 9 6 y 1800 metal w 3 y 1912x 188 9 y 1995 diff y 2000;
107 wirepoly 1993.1796 y 1800 metal w 3y 1906 x 1873 y 1995 diff y 2000;

goo



06w po18T7yB Ma MI -x71M,.,-A

109 wire poly 1985,1796 y 1800 metal w 3 y 1900 x 1857 y 1995 diff y 2000;109 wire poly 1977.1796 y 1800 metal w 3 y 1894 x 1841 y 1995 diff y 2000;

110 wie poly 1969.1796 y 1800 metal w 3 y 1888 x 1825 y 1995 diff y 2000;
111 wirepoly 1961.1796 y 1800 metal w 3 y 1882 x 1809 y 1995 diff y 2000;
112 wire poly 1953.1796 y 1800 metal w 3 y 1878 x 1793 y 1995 diff y 2000;
11 wire poly 1945,1796 y 1800 metal w 3 y 1870 x 1777 y 1995 diff y 2000;
114 wire poly l?,1796 y 1800 metal w 3 y 1864 x 1761 y 1995 diff y 2000;
115 wire poy 111M 796 y IWOmetalw3 y IWOx 745 y 99diff y2D00.
li6 wine poly 1921179 6 y 1600 meta w 3y 1852 x 1729 y 1995 diff y 2000.
117 wirepoy 1913,179 y 100 metal w 3y1846 x 1713 y 1995diff y 2000;
118 wire poly 1905,1796 y 1800 metal w 3 y 1840 x 1697 y 1995 diff y 2000;
119 wire poly 87.17G6y 1800 metal w y1834x 1681y 1995 diffy 2000;
120 winepoly 1 .1796 y 100metal w 3y1828x1665 y 1995dfty 2000;
121 wire poly Joel.1796 y 1800 metal w 3 y 1822 x 1649 y 1995 diff y 2000;
122 wire poly 187.1796 y1800 metal w 3 y 1816x 1633y 1995 diffy 2000;
123 wirepoly 166.179y 1800 metal w 3y1810 x 117 y 1995 diff y 2000;
124 /" plal vdd & god interconnects 0/
125 wire metal 1205,1043 w 4 y 1028 x 1200.
1 6 wire metal 1200.1000 w 4 x 1220y 1198x 1285:
127 wire metal 893,1043w 4 y1040 x 884;
126 wire metal 86. 1028 w 4 x 890 y 1040;
129 wire metal 080,1028 w 4 y 975 x 883;
130 wire metal 342.1043 w 4 y 956 x 355;
131 wire metal 342.1001 w 4 x356;
132 /* p1a2 vdd & grd interconnects 0/
133 wire metal 1811.596 w 4 y 614 x 1808;
134 wire metal 1520.614 w 4 x 1510 y 665 x 1501;
185 wire netal 1515.614 w 4 y 603;
13 wire metal 1520.24 w 4 x 884 y 251;
137 wire metal 84.595 w 4 y 639 x 892;
313w vi metal 884.639 w 4 y684 x 893;

139 /0 pla3 vdd & grid interconnects 0/
140 wire metal 1860.1786 w 4 x 1272 y 1739;
141 wiremetal l272.1283 w 4 y 1240 x 1286;
142 wire metal 1272,1240 w 4 y 1196 x 1285;
143 wire metal 2119.1739 w 4 y 1758 x 2116;
144 wire metal 1860,1758 w 4 x 18 55 y 1747;
145 wire metal 1855.1283 w 4 y 1280 x 1846;
148 wire metal 1855,1280 w 4 y 1215 x 1845;
147 wire metal 184,1196 w 4 x 2118 y 1276;
148 /" pla4 vdd & gid interconnects */
149 wiremetal 1590,2424 w4 x 2128 y 2381;
150 wie vmetal 2128,2125W 4y 2081 x 2120;
151 wire metal 2128,2081 w 4 y 2036 x 2119;
152 wire metal 1607.2038 w 4 x 1457 y 2112 x 1462;
153 wire metal 1457,2381 w 4 y 2396 x 1462;
154 wire metal 1590,2396 w 4 x 1593 y 2381;
155 wire metal 1600,2118 w 4 y 2055 x 1607;
156 /9 end vdd & gid interconnects for the pla's /
157 /0 bonding pads in to plal inputs S/

158 wire metal 2270.132 y 220 x 877 y 910 diff y 920;
1IN wire metal 2120,132 y 212 x 861 y 910 dift y 920;
160 wire metal 1970,132 y 204 x 845 y 910 diff y 920;
161 wr metal 13,132 y 196 x 829 y 910 dff y 920;
162 wii metal "0,132 y 188 x 813 y 910 dtff y 920;

got
50



163 wire metal 1520,132 y 180 x 797 y 910 diff y 920;
164 wire metal 1370,132 y 172 x 781 y 910 diffy 920;
185 wire metal 1220,132 y 164 x 765 y 910 diff y 920;
166 wire metal 1070,132 y 156 x 749 y 910 diff y 920;
167 wire metal 920,132 y 148 x 733 y 910 dff y 920;
18 wire metal 770,132 y 140 x 717 y 910 diff y 920;
169 wire metal 620,132 y 140 x701 y 910 diffy 920;
170 wire metal 470,132 y 148 x 685 y 910 dift y 920;
171 wire metal 320,132 y 156 x 669 y 910 diff y 920;
172 wire metal 132,230 x 653 y 910 diff y 920;
173 wire metal 132.380 x 637 y 910 dlff y 920;
174 wire metal 132,530 x 621 y 910 diff y 920;
175 wire metal 132.680 x 605 y 910 diff y 920;
176 wire metal 132,830 x 180 y 688 x 589 y 910 diff y 920;
177 wire metal 132.980 x 188 y 696 x 573 y 910 diff y 920;
178 wire metal 132.1130 x 196y 704 x 557 y 910 dff y 920;
179 wire metal 132,1280 x 204 y 712 x 541 y 910 diff y 920;
180 wire metal 132,1430 x 212 y 720 x 525 y 910 diff y 920;
181 wire metal 132,1580 x 220 y 728 x 509 y 910 diff y 920;
182 wire metal 132,1730 x 228 y 736 x 493 y 910 diff y 920;
183 wire metal 132.1880 x 236 y 744 x 477 y 910 diff y 920;
184 wire metal 132,2030 x 244 y 752 x 461 y 910 diff y 920;
185 wire metal 132,2180 x 22 y 760 x 445 y 910 diff y 920;
186 wire metal 230,2568 y 2500 x 260 y 768 x 429 y 910 diff y 920;
187 wire metal 380,2568 y 2492 x 268 y 776 x 413 y 910 diff y 920;
188 wire metal 530,2566 y 2484 x 276 y 784 x 397 y 910 diff y 920;
189 wire metal 680,2568 y 2476 x 284 y 792 x 381 y 910 diffy 920;
190 wire metal 830,2568 y 2468 x 292 y 800 x 365 y 910 diff y 920;
191 I. end pads in to plal inputs /
192 /0 phi 1 to plal & pla2 0/
193 wire metal 980,2568 y 2460 x 300 y 922 poly x 355;
194 wire poly 882,922 w 2 x 888 y 718 x 893;
195 /*phi 1 to pla4 0/
196 wire metal 980,2460 x 1220 y 2240 diff w 3 y 2190 metal x 1260 y 2002
197 poly x 1607;
198 /*phl 1 to pla3 from plal & pla2 0/
199 wire metal 1260,2002 y 1220 poly y 1162 x 1288;
200 /*phi 2 plal 0/
201 wire metal 1130,2588 y 2470 x 1240 y 2220 diff w 3 y 2180 metal y 1220 poly
202 y 1041 x 1200;
203 /0 phi 2 pla4 0/
204 wire metal 1240,2383 x 1380 poly x 1462;
205 P/ phi 2 pla2 & pLa3 */
206 wire metal 1240.2440 w 3 x 2140 y 1745 poly x 211;
207 wire metal 2140.1745 w 3 y 1120 x 19 00 y 601 poly x 1803;
208 /0 end clock distribution 0/
209 /0 pla4 outputs to output bonding pads 0/
210 wire poly 1467,2434 y 2520 x 1325 y 2555;
211 wire poly 1475,2434 y 2555;
212 wire poly 1483,2434 y 2550 x 16 25 y 2555;
213 wire poly 1491,2434 y 2545 x 1775 y 2555;
214 wire poly 1499,2434 y 2540 x 1925 y 2555;
215 wire poly 1507,2434 y 2532 metal w 3 x 2075 poly y 2555;
216 wire poly 1515,2434 y 2524 metal w 3 x 22#5 poly y 2555;
217 wire poly 1523,2434 y 2516 metal w 3 x 2300 y 2225 x 2340 poly x 2355;

202

.. 't~ *.a.S



W7, 277

218 wire poly 1531,2434 y 2508 metal w 3 x 2290 y 2 075 x 2340 poly x 2355;
219 wire poly 1539,2434 y 2500 metal w 3 x 2280 y 1925 x 2340 poly x 2355;
220 wire poly 1547,2434 y 2492 metal w 3 x 2270 y 1775 x 2340 poly x 2355;
221 wire poly 1555,2434 y 2484 metal w 3 x 2260 y 1625 x 2340 poly x 2355;
222 wire poly 1563,2434 y 2476 metal w 3 x 2250 y 1475 x 2340 poly x 2355;
223 wire poly 1571,2434 y 2488 metal w 3 x 2240 y 1325 x 2340 poly x 2355;
224 wire poly 15 79 ,24 3 4 y 2450 metal w 3 x 2230 y 1175 x 2340 poly x 2355;
225 wire poly 1587,2434 y 2452 metal w 3 x 2220 y 1025 x 2340 poly x 2355;
226 /* end pla4 output wire runs to the output bonding pads 0/
227 /0 connect pad gnd & vdd 0/
228 wire metal 4,0 w 8 y 2700;
229 wire metal 0,2696 w 8 x 2500;
230 wire metal 2496,2700 w 8 y 0;
231 wire metal 04 w 8 x 2500;
232 wire metal 98,90 w 16 y 2610;
233 wire metal 90,2802 w 16 x 2410;
234 wire metal 2402,2810 w 16 y 90;
235 wire metal 90,98 w 16 x 2410;
236 /0 vdd & gnd connects for pla's 0/
237 /0 vdd for pla2 */
238 wire metal 2500,242 w 8 x 2450 diff w 8 x 2320 metal w 8 x 1860 w 4
239 x 1808;
240 wire metal 1860,242 w 4 y 642 x 1807;
241 /9 gnd connect for pla3 */
242 wire metal 2402,1700 w 8 x 2270 diffw 8 x 2130 metal w 4 y 1758 x 2120;
243 /0 vdd & gid connect for pla4 9/

244 wire metal 1260,2700 w 8 y 2640 diff w 8 y 2424 metal w 4 x 1463;
245 wire metal 1400,2602 w 8 y 2460 diff w 8 y 2396 metal w 4 x 1458;
246 /* pla3 connect vdd from pla4 0/
247 wire metal 1457,2036 w 4 y 1786;
248 /xtra vdd to pla3 */
249 wire metal 2500,1250 w 8 x 2430 diffw 8 x 2118;
250 /0 pla2 gnd connect 0/
251 wire metal 2402,614 w 8 x 1920 diff w 8 x 1840 metal w 4 x 18!1;
252 /0 plal vdd connect 0/
253 wire metal 940,2700 w 8 y 2640 difl w 8 y 2440 metal w 8 y 2240 x 820 y 219 ;
254 /Oplal gnd connect*/
255 wire metal 1400,2396 w 8 y 2202 x 1205 w 4 y 2!75;
256 /lxtra vdd to plal */
257 wire metal 0.1100 w 8 x 70 dtff w 8 x 320 metal w 8 x 342;
258 /dxtra gnd to plal /
259 wire metal 98,950 w 8 x 170 iff w 8 x 320 y 975 w 4 x 350
280 metal w 4 x 360;

281 /0 put identification 0/
262 designer(1980,700);

283

203

- V - "- .-.
" . V.- .. ' - " . . " *** - .- - .- ,',,,'- -s..' '- .'- . .. .'p% - .- '.. ' '.' . " . .,.



designer.cl

/Ogenerate a signature for the project*/

designerO

poly:

/"HAIENSTEIN */

wire 0,0 u 20;wire 0, 10 r 20;
wire 20,0 u 20;
wire 30,0 u 20 r 20 d 20;
wire 30.10 r 20;
wire 60,20 d 20 r 20 u 20;wire 110,0 1 20 u 20 r 15;

wire 90,10 r 10;
wire 120,0 u 20;
wire 140,0 u 20;
wire 125,13 u 6;

:4 ,wire 130,7 u 6;
wire 135,1 u 6;
wire 150,0 r 20 u 10 120 u 10 r 20;
wire 190,0 u 20;
wire 180.20 r 20;
wire 230,0 120 u 20 r 15;
wire 210, 10 r 10:
wire 240,0 r 20
wire 240,20 r 20;
wire 250,0 u 20;
wire 270,0 u 20;
wire 290,0 u 20;
wire 275.13 u 6;
wire 280,7 u 6;
wire 285,1 u 6;

/0 CONRADI *I

wire 20.40 120 u 20 r 15;
wire 30,40 u 20 r 20 d 20 121;
wire 80,40 u 20;
wire 80,40 u 20;
wire 65,53 u 6;
wire 70,47 u 6;
wire 75,41 u 6;
wire 90,40 u 20 r 20 d 101 21;
wire 1,O d 5;
wire 110,40 u 5;
wire 120,40 u 20 r 20 d 20;
wire 120,50 r 20;
wire 150,40 u 20 r 20 d 20 121;
wire 152.40 u 20;

204

. , -,¢ ,'as - '.',.,, ' . ". .- .. -• . . .' .. C .. .. .. ..., ,..~* - . .C. . ., .. .. ..' .,. " '
* :'J s i _w ., C*i' , .: C*,; . . . .,;,: ,,,;',." " ' "" "" ' "" '"" ' "": ' '"'



wire 180.40 r 20;
wire 10.60 r 20;
wire 190,40 u 20;

/ONAVY PGS '83' '/

wire 0,80 u 20;
wir20,80 u 20;
wire 5,93 u 6;
wire 10.87 u 6;
wire 15.81 u 6;
wire 30,80 u 20 r 20 d 20:
wire 30.90 r 20;
wire 60,100 d 10;
wire 65,90 d 8;
wire 70.80 u 2;
wire 75,90 d 8;
wire 80,100 d 10;
wire 90,100 d lOr 20 u 10;
wire 100,80 u 10;
wire 130,100 d 4;
wire 140,80 u 12 r 20 d 12 121;
wire 142.92 u 8 r 16 d 8;
wire 170,80 r 20 u 20 115;
wire 190,901 10;
wire 200,100 d 4;

20b

k



flnal.sym

1 47A2
2 51 B1
3 56 A1
4 5990O
5 63AD
6 67PHI1
7 71 PH121a iS15

9 17S14
10 lBS13
11 19S12
12 20511
13 21 510
14 2259
15 84258
16 1468S7
17 295556
18 3403 5
19 426254
20 4875S3
21 544352
22 650751
23 7349SO
24 3 vdd
25 37grd
?o 11331 CIN
27 11326 B15
28 11321 A15
29 11316 B14
30 11311 A14
31 11306 B13
32 11301 A13
33 11296 B12
34 11291 A12
35 11286 Bil
36 11281 All
37 11276 B1O
38 11271 A10
39 11266 B9
40 10863 A9
41 10658 98
42 10279 A8
43 8897 B7
44 8869 A7
45 73 B6
46 6511AS
47 5446 B5
48 4878 A5
49 4265 B4
50 3107 A,1
51 295 33
52 1487 A3
53 845 92

206



sim.in

K PHM 011000 PH12 00001 1
W AA15 A14A13 A12 Al1 A10 A9 A8 A7 AS A5 A4 A3 A2 Al AO
" B B15 B14 B13 B12 Bll B10 B9 BB B7 B6 B5 B4 B3 B2 Bl B0
" OUT S15 S14 S13 S12 Sll S10 S9 S8 S7 SS S5 S4 S3 S2 S1 SO
W CIN CN
h A13 A10 A9 AS AS A5 A4 A0 B14 B13 B9 B7 B6 B5 Bl CIN
I A15 A14 A12 All A7 A3 A2 Al B15 B12 B10 B 1 B8 B4 83 2 B0
c
I A13 AS A4 AD B13 B7 B5 CIN
hAl A2A7 Al B2 B581 B12
c
h A13 A4 AO B85 CIN
c
1A9AB A4 AD B14 B9 B5 B1
o
IA15 A14 A13 A12 Al1 A10 A9 AS A7 AS A5 A4 A3 A2 A1 AO CIN
1B15 B14 B13 B12 B11 B10 B9 BS B7 B8 B5 B4 B3 B2 B1 BO
c
hA15 A14 A13 A12 All A10 A9 AS A7 AS A5 A4 A3 A2 Al AO
0

L A15 A14
hBl4 B13 B12 BII BlO B9 B B7BS B5 B4 B3 B2 BI BO CIN

c

c

- " '' ' I " - ","..,,'' -. ,. ' ,.-.':,'' .. :. .- " , , , : " . -- , , . ..- ,C-,-. -



sim.out

1 2416 transistors. 1546 nodes (1233 pulled up)
2 CIN= 11
3 OUT=XXXOO000OOOOOO0OC
4 B=0110001011100010 25314
5 A=010011101110001 10097
S cycl0 took 161 events

7, CINz0

9 B=0101101001100110 23142
10 A=0000111011100110 3814
11 cycle took 1391 events
12 CIN=1 1
13 OUT=EDDDO (
14 B=0101101011100110 23270
15 A=0010111011110111 12023
16 cycle took 1284 events
17 CIN=I 1
18 OUTl1000101001010100 35412
19 B=0001100011000100 6340
20 A=0010110011100110 11494
21 cycle took 1440 events
22 CIN-- 0
3 OUTW0110100101001100 26956

24 B=0000000000000000 0
25 A=00000000000 0
86 cycle took 1380 events
27 CIN: 0
28 OUT=1000100111011110 35294
29 B=0000000000000000 0
30 A=1111111111111111 65535
31 cycle took 1423 events
32 CIN 11
33 OUT=0100010110101011 17535
34 B=0111111111111111 3276?
35 A=0011111111111111 16383
36 c cIle took 1583 events
37 M1 1
38 oUT=0000000000000000 0

A 39 B=0111111111111111 32767
40 A=0011111111111111 16383
41 cycle took 1317 events
42 CINz1 1
43 OUT=1111111111111111 85535
44 B=0111111111111111 32767
45 A=0011111111111111 18383
46 cycle took 1261 events
47 CINI 1
48 OUT=1011111111111111 49151
49 BO-0111111111111 32767
50 A=001111111111111 16383
51 cyle took 989 events
52 CIz1 1

2L8

---5 1. ~4~a ~ .J~*a



53 OUT=1O11111111111111 49151
54 BU0111111111111111 327
55 AOO11111111111111 16383
58 cycle took 796 events

#40

ha, r:, e e:



LIST OF REFERENCES

1. Me&d.C. and ConwayL, Mttroducio To WS Systems. Addison-Wesley, 1980.

. Thomau.R.T. and YatesJ., A ser Guide To The UNIX System. McGraw-Hill,
1962.

8. UNIX Og'rwnnes Manual, Bell Laboratories, 7th ed.. 1979.

4. PurdumnJ., CProgramm*ng Guide, Que, 1983.

5. Sa&M.T.. CLL - A Odp Layout Language, version 3, paper obtained from
Stanford University.

6. WofN.W., DiMgn Vauidation For EE271, paper obtained from Stanford
University.

7. Newkirk.J., MathewsR., RedfordJ., and Burns.C.. Stanford niMOS Cel Library,
let ed., 1981.

8. Cohen.D. and Richardson.L, MOSIS User'i Manual, USC/ISI, 1982.

9. Hwang.K., Computer Arithmetic Principes, Architecture. And Design, Wiley,
1979.

10. iags User's Manual version 2H.

210

I . l5 -. *....." . .. ...."*\- " " . .. " '"



INITIAL DISTRIBU7ION LIST

No. Copies
1. Superatendat

Atn Library, Code 0142
Naval Poetgraduate School
Monterey, California 93943

2. Dr. Robert Mathews 1
AEL 205
Stanford, CA 94305

3. Lt.Col. Harold Carter 1
AFIT/ENG
Wright Patterson AFB, Ohio 45433

4. LL Joseph R. Conradi 2
1102 Spruance Rd.
Monterey, CA 93940

5. LL Bruce R. Hauenstein 1
4216 Maintree Ct.
Farfax VA 22033

6. Capt. Mark Stotzer 1
1028 Spruance Rd.
Monterey, CA 93940

7. Mr. Albert Won& 1
Code 52
Naval Postgraduate School
Monterey, CA 93943

S. Me. Susan Taylor 1
AEL 205
Stanford. CA 94305

9. Defense Technical Information Center 2
Cameron Station
Alexandria. VA 22314

10. Chairman. EE Department 1
Code 62
Naval Postgraduate School
Monterey, CA 93943

11. Dr. Donald Kirk 15
Code 82KM
Naval Postgraduate School
Monterey. CA 93943

a11



12. Prof. Robert Strum
Code 62S-

IANaval Postgraduate School
Monterey. CA 93943

13. Dr. H.H.Loomis
9 Code 6ZLM

Naval Postgraduate School
Monterey. CA 93943

B

21



vV4 ok

ED-

I f. .
I-, tl 04 4 'A

i "t 41% 1.,

V 4 k

'D,
r---LtAd,,

j. 41;


